Skip to main content
Log in

A Review on Computational Fluid Dynamics Modelling in Human Thoracic Aorta

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

It has long been recognized that the forces and stresses produced by the blood flow on the walls of the cardiovascular system are central to the development of different cardiovascular diseases (CVDs). However, up to now, the reason why arterial diseases occur at preferential sites is still not fully understood. This paper reviews the progress, made largely within the last decade, towards the use of 3D computational fluid dynamics (CFD) models to simulate the blood flow dynamics and its interaction with the arterial wall within the human thoracic aorta (TA). We describe the technical aspects of model building, review methods to create anatomic and physiologic models, obtain material properties, assign boundary conditions, solve the equations governing blood flow, and describe the assumptions used in running the simulations. Detailed comparative information is provided in tabular format about the model setup, simulation results, and a summary of the major insights and contributions of each TA article reviewed. Several syntheses are given that summarize the research carried out by influential research groups, review important findings, discuss the methods employed, limitations, and opportunities for further research. We hope that this review will stimulate computational research that will contribute to the continued improvement of cardiovascular health through a strong interaction and cooperation between engineers and clinicians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Antiga, L., M. Piccinelli, L. Botti, B. Ene-Iordache, A. Remuzzi, and D. Steinman. An image-based modelling framework for patient-specific computational hemodynamics. Med. Biol. Eng. Comput. 46:1097–1112, 2008.

    Article  Google Scholar 

  2. Antiga, L., and D. A. Steinman. Rethinking turbulence in blood. Biorheology 46:77–81, 2009.

    Google Scholar 

  3. Babuska, I., and J. T. Oden. Verification and validation in computational engineering and science: basic concepts. Comput. Methods Appl. Mech. Eng. 193:4057–4066, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  4. Ballyk, P. D., D. A. Steinman, and C. R. Ethier. Simulation of non-Newtonian blood flow in an end-to-end anastomosis. Biorheology 31(5):565–586, 1994.

    Google Scholar 

  5. Banks, J., and N. W. Bressloff. Turbulence modelling in three-dimensional stenosed arterial bifurcations. J. Biomech. Eng. 129:40–50, 2007.

    Article  Google Scholar 

  6. Barbee, J. H. The effect of temperature on the relative viscosity of human blood. Biorheology 10:1–5, 1973.

    Google Scholar 

  7. Bazilevs, Y., J. R. Gohean, T. J. R. Hughes, R. D. Moser, and Y. Zhang. Patient- specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput. Methods Appl. Mech. Eng. 198:3534–3550, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  8. Bekkers, E. J., and C. A. Taylor. Multiscale vascular surface model generation from medical imaging data using hierarchical features. IEEE Trans. Med. Imaging 27:331–341, 2008.

    Article  Google Scholar 

  9. Benim, A. C., A. Nahavandi, A. Assmann, D. Schubert, P. Feindt, and S. H. Suh. Simulation of blood flow in human aorta with emphasis on outlet boundary conditions. Appl. Math. Modell. 35(7):3175–3188, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  10. Blanco, P. J., R. A. Feijoo, and S. A. Urquiza. A unified variational approach for coupling 3D–1D models and its blood flow applications. Comput. Methods Appl. Mech. Eng. 196:4391–4410, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  11. Blum, J., F. X. Le Dimet, and I. M. Navon. Data assimilation for geophysical fluids. Comput. Methods Atmos. Oceans 14:385–441, 2009.

    Google Scholar 

  12. Bogren, H. G., R. H. Klipstein, D. N. Firmin, R. H. Mohiaddin, S. R. Underwood, R. S. Rees, and D. B. Longmore. Quantitation of antegrade and retrograde blood flow in the human aorta by magnetic resonance velocity mapping. Am. Heart J. 117(6):1214–1222, 1989.

    Article  Google Scholar 

  13. Bogren, H. G., R. H. Mohiaddin, P. J. Kilner, L. J. Jimenez-Borreguero, G. Z. Yang, and D. N. Firmin. Blood flow patterns in the thoracic aorta studied with three-directional MR velocity mapping: the effects of age and coronary artery disease. J. Magn. Reson. Imaging 7(5):784–793, 1997.

    Article  Google Scholar 

  14. Boussel, L., V. Rayz, A. Martin, G. Acevedo-Bolton, M. T. Lawton, R. Higashida, W. S. Smith, W. L. Young, and D. Saloner. Phase-contrast magnetic resonance imaging measurements in intracranial aneurysms in vivo of flow patterns, velocity fields, and wall shear stress: comparison with computational fluid dynamics. Magn. Reson. Med. 61(2):409–417, 2009.

    Article  Google Scholar 

  15. Bove, E. L., M. R. de Leval, F. Migliavacca, G. Guadagni, and G. Dubini. Computational fluid dynamics in the evaluation of hemodynamic performance of cavopulmonary connections after the Norwood procedure for hypoplastic left heart syndrome. J. Thorac. Cardiovasc. Surg. 126(4):1040–1047, 2003.

    Article  Google Scholar 

  16. Boyd, J., and J. M. Buick. Comparison of Newtonian and non-Newtonian flows in a two-dimensional carotid artery model using the lattice Boltzmann method. Phys. Med. Biol. 52:6215–6228, 2007.

    Article  Google Scholar 

  17. Brown, A. G., Y. Shi, A. Marzo, C. Staicu, I. Valverde, P. Beerbaum, P. V. Lawford, and D. R. Hose. Accuracy versus computational time: translating aortic simulations to the clinic. J. Biomech. 45(3):516–523, 2012.

    Article  Google Scholar 

  18. Campbell, I. C., J. Ries, S. S. Dhawan, A. A. Quyyumi, W. R. Taylor, and J. N. Oshinski. Effect of inlet velocity profiles on patient-specific computational fluid dynamics simulations of the carotid bifurcation. J. Biomech. Eng. 134(5):151001–151008, 2012.

    Article  Google Scholar 

  19. Cardiovascular diseases (CVDs), Fact sheet 317. In: World Health Organization. 2012. http://www.who.int/mediacentre/factsheets/fs317/en/index.html. Accessed 15 December 2012

  20. Caro, C. G., T. J. Pedley, R. C. Schroter, and W. A. Seed. The Mechanics of the Circulation. Oxford University Press, 1978.

  21. Caro, C. G., K. H. Parker, P. J. Fish, and M. J. Lever. Blood flow near the arterial wall and arterial disease. Clin. Hemorheol. 5(6):849–871, 1985.

    Google Scholar 

  22. Cecchi, E., C. Giglioli, S. Valente, C. Lazzeri, G. F. Gensini, R. Abbate, and L. Mannini. Role of hemodynamic shear stress in cardiovascular disease. Atherosclerosis 214(2):249–256, 2011.

    Article  Google Scholar 

  23. Chen, J., and X. Y. Lu. Numerical investigation of the non-Newtonian pulsatile blood flow in a bifurcation model with a non-planar branch. J. Biomech. 39:818–832, 2006.

    Article  Google Scholar 

  24. Cheng, C., D. Tempel, R. van Haperen, A. van der Baan, F. Grosveld, M. J. Daemen, R. Krams, and R. de Crom. Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation 113(23):2744–2753, 2006.

    Article  Google Scholar 

  25. Chien, S., S. Usami, R. J. Dellenback, and M. I. Gregersen. Blood viscosity: Influence of erythrocyte aggregation. Science 157:827–829, 1967.

    Article  Google Scholar 

  26. Cho, Y. I., and K. R. Kensey. Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: steady flows. Biorheology 28:241–262, 1991.

    Google Scholar 

  27. Cohen, I. M., and P. K. Kundu. Fluid Mechanics. 3ed. Cambridge University Press, New York, 2004.

  28. Coogan, J. S., F. P. Chan, J. F. LaDisa, Jr., C. A. Taylor, F. L. Hanley, and J. A. Feinstein. Computational fluid dynamic simulations for determination of ventricular workload in aortic arch obstructions. J. Thorac. Cardiovasc. Surg. 2012. doi:10.1016/j.jtcvs.2012.03.051.

    Google Scholar 

  29. Coogan, J. S., J. D. Humphrey, and C. A. Figueroa. Computational simulations of hemodynamic changes within thoracic, coronary, and cerebral arteries following early wall remodelling in response to distal aortic coarctation. Biomech. Model. Mechanobiol. 2012. doi:10.1007/s10237-012-0383-x.

    Google Scholar 

  30. Crosetto, P., P. Reymond, S. Deparis, D. Kontaxakis, N. Stergiopulos, and A. Quarteroni. Fluid-structure interaction simulation of aortic blood flow. Comput. Fluids 43:46–57, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  31. Cunningham, K. S., and A. I. Gotlieb. The role of shear stress in the pathogenesis of atherosclerosis. Lab. Invest. 85(1):9–23, 2005.

    Google Scholar 

  32. Davies, P. F., C. F. Dewey, S. Bussolari, E. Gordon, and M. A. Gimbrone. Influence of hemodynamic forces on vascular endothelial function. In vitro studies of shear stress and pinocytosis in bovine aortic cells. J. Clin. Investig. 73:1121–1129, 1984.

    Article  Google Scholar 

  33. Davies, P. F., T. Mundel, and K. A. Barbee. A mechanism for heterogeneous endothelial responses to flow in vivo and in vitro. J. Biomech. 28:1553–1560, 1995.

    Article  Google Scholar 

  34. De Santis, G., P. Mortier, M. De Beule, P. Segers, P. Verdonck, and B. Verhegghe. Patient-specific computational fluid dynamics: structured mesh generation from coronary angiography. Med. Biol. Eng. Comput. 48(4):371–380, 2010.

    Article  Google Scholar 

  35. Dean, W. R. Note on the motion of fluid in a curved pipe. Philos. Mag. 4:208–223, 1927.

    MATH  Google Scholar 

  36. Dean, W. R. The stream-line motion of fluid in a curved pipe. Philos. Mag. 5:673–695, 1928.

    Google Scholar 

  37. Deparis, S., M. A. Fernandez, and L. Formaggia. Acceleration of a fixed point algorithm for fluid-structure interaction using transpiration conditions. Math. Model. Numer. Anal. 37(4):601–616, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  38. Donea, J., S. Giuliani, and J. P. Halleux. An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Comput. Methods Appl. Mech. Eng. 33:689–723, 1982.

    Article  MATH  Google Scholar 

  39. Ethier, C. R. Computational modelling of mass transfer and links to atherosclerosis. Ann. Biomed. Eng. 4:461–471, 2002.

    Article  MathSciNet  Google Scholar 

  40. Falsetti, H., K. M. Kiser, G. P. Francis, and E. R. Belmore. Sequential velocity development in the ascending and descending aorta of the dog. CircRes. 21:328–338, 1972.

    Google Scholar 

  41. Fernandez, M. A., and P. Le Tallec. Linear stability analysis in fluid-structure interaction with transpiration. Part II: numerical analysis and applications. Comput. Methods Appl. Mech. Eng. 192:4837–4873, 2003.

    Article  MATH  Google Scholar 

  42. Figueroa, C. A., I. E. Vignon-Clementel, K. E. Jansen, T. J. R. Hughes, and C. A. Taylor. A coupled momentum method for modelling blood flow in three-dimensional deformable arteries. Comput. Methods Appl. Mech. Eng. 195:5685–5706, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  43. Filipovic, N., D. Milasinovic, N. Zdravkovic, D. Böckler, and H. von Tengg-Kobligk. Impact of aortic repair based on flow field computer simulation within the thoracic aorta. Comput. Methods Programs Biomed. 101(3):243–252, 2011.

    Article  Google Scholar 

  44. Ford, M. D., H. N. Nikolov, J. S. Milner, S. P. Lownie, E. M. DeMont, W. Kalata, F. Loth, D. W. Holdsworth, and D. A. Steinman. Virtual angiography for visualization and validation of computational models of aneurysm hemodynamics. IEEE Trans. Med. Imaging 24(12):1586–1592, 2005.

    Article  Google Scholar 

  45. Ford, M. D., G. R. Stuhne, H. N. Nikolov, D. F. Habets, S. P. Lownie, D. W. Holdsworth, and D. A. Steinman. PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models. J. Biomech. Eng. 130(2):021015, 2008.

    Article  Google Scholar 

  46. Formaggia, L., J. F. Gerbeau, F. Nobile, and A. Quarteroni. On the coupling of 3D and 1D Navier–Stokes equations for flow problems in compliant vessels. Comput. Methods Appl. Mech. Eng. 191:561–582, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  47. Formaggia, L., A. Moura, and F. Nobile. On the stability of the coupling of 3D and 1D fluid-structure interaction models for blood flow simulations. M2AN Math. Model Numer. Anal. 41(4):743–769, 2007.

    Google Scholar 

  48. Formaggia, L., D. Lamponi, M. Tuveri, and A. Veneziani. Numerical modelling of 1D arterial networks coupled with a lumped parameters description of the heart. Comput. Methods Biomech. Biomed. Eng. 9(5):273–288, 2006.

    Article  Google Scholar 

  49. Friedman, M. H., O. J. Deters, F. F. Mark, C. B. Bargeron, and G. M. Hutchins. Arterial geometry affects hemodynamics. A potential risk factor for athersoclerosis. Arteriosclerosis 46(2):225–231, 1983.

    Article  Google Scholar 

  50. Fung, Y. C. Biomechanics, Motion, Flow, Stress, and Growth. Springer-Verlag, 1990.

  51. Fung, Y. C. Biomechanics Circulation. 2nd ed. Springer, 1997.

  52. Gallo, D., G. De Santis, F. Negri, D. Tresoldi, R. Ponzini, D. Massai, M. A. Deriu, P. Segers, B. Verhegghe, G. Rizzo, and U. Morbiducci. On the use of in vivo measured flow rates as boundary conditions for image-based hemodynamic models of the human aorta: implications for indicators of abnormal flow. Ann. Biomed. Eng. 40(3):729–741, 2012.

    Article  Google Scholar 

  53. Gao, F., Z. Guo, M. Sakamoto, and T. Matsuzawa. Fluid structure interaction within a layered aortic arch model. J. Biol. Phys. 32(5):435–454, 2006.

    Article  Google Scholar 

  54. Gao, F., and T. Matsuzawa. FSI within aortic arch model over cardiac cycle and Influence of wall stiffness on wall stress in layered wall. Eng. Lett. 13:167–172, 2006.

    Google Scholar 

  55. Gao, F., O. Ohta, and T. Matsuzawa. Fluid-structure interaction in layered aortic arch aneurysm model: assessing the combined influence of arch aneurysm and wall stiffness. Australas. Phys. Eng. Sci. Med. 3(1):32–41, 2008.

    Article  Google Scholar 

  56. Gao, F., M. Watanabe, and T. Matsuzawa. Stress analysis in a layered aortic arch model under pulsatile blood flow. Biomed. Eng. Online. 5:25, 2006.

    Article  Google Scholar 

  57. Gardhagen, R., J. Lantz, F. Carlsson, and M. Karlsson. Quantifying turbulent wall shear stress in a stenosed pipe using large eddy simulation. J. Biomech. Eng. 132:061002, 2010.

    Article  Google Scholar 

  58. Gardhagen, R., J. Renner, T. Lanne, and M. Karlsson. Subject specific wall shear stress in the human thoracic aorta. WSEAS Trans. Biol. Biomed. 3(10):609–614, 2006.

    Google Scholar 

  59. Gerbeau, J. F., M. Vidrascu, and P. Frey. Fluid-structure interaction in blood flows on geometries based on medical imaging. Comput. Struct. 83:155–165, 2005.

    Article  Google Scholar 

  60. Gimbrone, Jr., M. A., J. N. Topper, T. Nagel, K. R. Anderson, and G. Garcia-Cardena. Endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann. N. Y. Acad. Sci. 902:230–239, 2000.

    Article  Google Scholar 

  61. Gonzalez, H. A., and N. O. Moraga. On predicting unsteady non-newtonian blood flow. Appl. Math. Comput. 170:909–923, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  62. Griffith, B. E. Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions. Int. J. Numer. Methods Biomed. Eng. 28:317–345, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  63. Hamakiotes, C. C., and S. A. Berger. Periodic flows through curved tubes: the effect of the frequency parameter. J. Fluid Mech. 210:353–370, 1990.

    Article  Google Scholar 

  64. Hart, J. D. Nonparametric Smoothing and Lack-of-Fit Tests. 1st ed. Springer-Verlag, 1997.

  65. He, X., and D. Ku. Pulsatile flow in the human left coronary artery bifurcation. J. Biomech. Eng. 118:74–82, 1996.

    Article  Google Scholar 

  66. Hofer, M., G. Rappitsch, K. Perktold, W. Trubel, and H. Schima. Numerical study of wall mechanics and fluid dynamics in end-to-side anastomoses and correlation to intimal hyperplasia. J. Biomech. 29:1297–1308, 1996.

    Article  Google Scholar 

  67. Hoff, H. F., and W. D. Wagner. Plasma low density lipoprotein accumulation in aortas of hypercholesterolemic swine correlates with modifications in aortic glycosaminoglycan composition. Atherosclerosis 61:231–236, 1986.

    Article  Google Scholar 

  68. Holzapfel, G. A., and R. W. Ogden. Mechanics of Biological Tissue. Springer-Verlag, 2006.

  69. Hughes, T. J. R., W. K. Liu, and T. K. Zimmermann. Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 29:329–349, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  70. Hughes, T. J. R., and J. Lubliner. On the one-dimensional theory of blood flow in the larger vessels. Math. Biosci. 18:161–170, 1973.

    Article  MATH  Google Scholar 

  71. Humphrey, J. D., and K. R. Rajagopal. A constrained mixture model for growth and remodelling of soft tissues. Math. Model Methods Appl. Sci. 12:407–430, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  72. Hunter, P. J., A. J. Pullan, and B. H. Smaill. Modeling total heart function. Annu. Rev. Biomed. Eng. 5:147–177, 2003.

    Article  Google Scholar 

  73. Jin, S., J. Oshinski, and D. P. Giddens. Effect of wall motion and compliance on flow patterns in the ascending aorta. J. Biomech. Eng. 125:347–354, 2003.

    Article  Google Scholar 

  74. Johnston, B. M., P. R. Johnston, S. Corney, and D. Kilpatrick. Non-Newtonian blood flow in human right coronary arteries: steady state simulations. J. Biomech. 37:709–720, 2004.

    Article  Google Scholar 

  75. Johnston, B. M., P. R. Johnston, S. Corney, and D. Kilpatrick. Non-newtonian blood flow in human right coronary arteries: Transient simulations. J. Biomech. 39:1116–1128, 2006.

    Article  Google Scholar 

  76. Kern, M. J., M. J. Lim, and J. A. Goldstein. Hemodynamic Rounds: Interpretation of Cardiac Pathophysiology from Pressure Waveform Analysis Transport Phenomena in the Cardiovascular System. 3rd ed. Wiley-Blackwell, 2009.

  77. Keshavarz-Motamed, Z., and L. Kadem. 3D pulsatile flow in a curved tube with coexisting model of aortic stenosis and coarctation of the aorta. Med. Eng. Phys. 33(3):315–324, 2011.

    Article  Google Scholar 

  78. Kilner, P. J., G. Z. Yang, R. H. Mohiaddin, D. N. Firmin, and D. B. Longmore. Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping. Circulation 88(5):2235–2247, 1993.

    Article  Google Scholar 

  79. Kim, T., A. Y. Cheer, and H. A. Dwyer. A simulated dye method for flow visualization with a computational model for blood flow. J. Biomech. 27:1125–1136, 2004.

    Article  Google Scholar 

  80. Kim, Y., S. Lim, S. V. Raman, O. P. Simonetti, and A. Friedman. Blood flow in a compliant vessel by the immersed boundary method. Ann. Biomed. Eng. 37(5):927–942, 2009.

    Article  Google Scholar 

  81. Kim, H. J., I. E. Vignon-Clementel, C. A. Figueroa, J. F. LaDisa, Jr., K. E. Jansen, J. A. Feinstein, and C. A. Taylor. On coupling a lumped parameter heart model and a three-dimensional finite element aorta model. Ann. Biomed. Eng. 37(11):2153–2169, 2009.

    Article  Google Scholar 

  82. Kleinstreuer, C., S. Hyun, J. R. Buchanan, Jr., P. W. Longest, J. P. Archie, Jr., and G. A. Truskey. Hemodynamic parameters and early intimal thickening in branching blood vessels. Crit. Rev. Biomed. Eng. 29:1–64, 2001.

    Article  Google Scholar 

  83. Komai, Y., and K. Tanishita. Fully developed intermittent flow in a curved tube. J. Fluid Mech. 347:263–287, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  84. Krittian, S., U. Janoske, H. Oertel, and T. Bhlke. Partitioned fluid–solid coupling for cardiovascular blood flow. Ann. Biomed. Eng. 38:1426–1441, 2010.

    Article  Google Scholar 

  85. Ku, D. N. Blood flow in arteries. Annu. Rev. Fluid Mech. 29:399–434, 1997.

    Article  MathSciNet  Google Scholar 

  86. Ku, J. P., M. T. Draney, F. R. Arko, W. A. Lee, F. P. Chan, N. J. Pelc, C. K. Zarins, and C. A. Taylor. In vivo validation of numerical prediction of blood flow in arterial bypass grafts. Ann. Biomed. Eng. 30(6):743–752, 2002.

    Article  Google Scholar 

  87. Ku, J. P., C. J. Elkins, and C. A. Taylor. Comparison of CFD and MRI flow and velocities in an in vitro large artery bypass graft model. Ann. Biomed. Eng. 33(3):257–269, 2005.

    Article  Google Scholar 

  88. Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 5(3):293–302, 1985.

    Article  Google Scholar 

  89. Kuhl, E., and G. A. Holzapfel. A continuum model for remodelling in living structures. J. Mater. Sci. 42:8811–8823, 2007.

    Article  Google Scholar 

  90. Kung, E. O., A. S. Les, C. A. Figueroa, F. Medina, K. Arcaute, R. B. Wicker, M. V. McConnell, and C. A. Taylor. In vitro validation of finite element analysis of blood flow in deformable models. Ann. Biomed. Eng. 39:1947–1960, 2011.

    Article  Google Scholar 

  91. Kung, E. O., A. S. Les, F. Medina, R. B. Wicker, M. V. McConnell, and C. A. Taylor. In vitro validation of finite element model of AAA hemodynamics incorporating realistic outlet boundary conditions. J. Biomech. Eng. 133(4):041003, 2011.

    Article  Google Scholar 

  92. LaDisa, Jr., J. F., R. J. Dholakia, C. A. Figueroa, I. E. Vignon-Clementel, F. P. Chan, M. M. Samyn, J. R. Cava, C. A. Taylor, and J. A. Feinstein. Computational simulations demonstrate altered wall shear stress in aortic coarctation patients treated by resection with end-to-end anastomosis. Congenit Heart Dis. 6(5):432–443, 2011.

    Article  Google Scholar 

  93. LaDisa, Jr., J. F., C. A. Figueroa, I. E. Vignon-Clementel, H. J. Kim, N. Xiao, L. M. Ellwein, F. P. Chan, J. A. Feinstein, and C. A. Taylor. Computational simulations for aortic coarctation: representative results from a sampling of patients. J. Biomech. Eng. 133(9):81–89, 2011.

    Article  Google Scholar 

  94. Lagana, K., R. Balossino, F. Migliavacca, G. Pennati, E. L. Bove, M. R. de Leval, and G. Dubini. Multiscale modelling of the cardiovascular system: application to the study of pulmonary and coronary perfusions in the univentricular circulation. J. Biomech. 38:1129–1141, 2005.

    Article  Google Scholar 

  95. Laín, S., and M. Sommerfeld. Characterisation of pneumatic conveying systems using the Euler/Lagrange approach. Powder Technol. 235:764–782, 2013.

    Article  Google Scholar 

  96. Lam, S. K., G. S. K. Fung, S. W. K. Cheng, and W. K. Chow. A computational study on the biomechanical factors related to stent-graft models in the thoracic aorta. Med. Biol. Eng. Comput. 46:1129–1138, 2008.

    Article  Google Scholar 

  97. Lantz, J., R. Gardhagen, and M. Karlsson. Quantifying turbulent wall shear stress in a subject specific human aorta using large eddy simulation. Med. Eng. Phys. 34(8):1139–1148, 2012.

    Article  Google Scholar 

  98. Lantz, J., and M. Karlsson. Large eddy simulation of LDL surface concentration in a subject specific human aorta. J. Biomech. 45(3):537–542, 2012.

    Article  Google Scholar 

  99. Lantz, J., J. Renner, and M. Karlsson. Wall shear stress in a subject specific human aorta—influence of fluid-structure interaction. Int. J. Appl. Mech. 3:759–778, 2011.

    Article  Google Scholar 

  100. Leuprecht, A., S. Kozerke, P. Boesiger, and K. Perktold. Blood flow in the human ascending aorta: a combined MRI and CFD study. J. Eng. Math. 47:387–404, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  101. Liepsch, D. An introduction to biofluid mechanics—basic models and applications. J. Biomech. 35:415–435, 2002.

    Article  Google Scholar 

  102. Liepsch, D., S. Moravec, and R. Baumgart. Some flow visualization and laser-doppler velocity measurements in a true-to-scale elastic model of a human aortic arch—a new model technique. Biorheology 29:563–580, 1992.

    Google Scholar 

  103. Liu, Y., C. Dang, M. Garcia, H. Gregersen, and G. S. Kassab. Surrounding tissues affect vessel mechanics. AJP—Heart Circ. Physiol. 294:514–523, 2008.

    Google Scholar 

  104. Liu, X., Y. B. Fan, and X. Y. Deng. Effect of spiral flow on the transport of oxygen in the aorta: A numerical study. Ann. Biomed. Eng. 38:917–926, 2010.

    Article  Google Scholar 

  105. Liu, X., Y. Fan, X. Deng, and F. Zhan. Effect of non-Newtonian and pulsatile blood flow on mass transport in the human aorta. J. Biomech. 44(6):1123–1131, 2011.

    Article  Google Scholar 

  106. Liu, X., F. Pu, and Y. Fan. A numerical study on the flow of blood and the transport of LDL in the human aorta: the physiological significance of the helical flow in the aortic arch. Am. J. Physiol. Heart Circ. Physiol. 297:H163–H170, 2009.

    Article  Google Scholar 

  107. Longest, P. W., and S. Vinchurkar. Effects of mesh style and grid convergence on particle deposition in bifurcating airway models with comparisons to experimental data. Med. Eng. Phys. 29(3):350–366, 2007.

    Article  Google Scholar 

  108. Machyshyn, I. M., P. H. M. Bovendeerd, A. A. F. van de Ven, P. M. J. Rongen, and F. N. van de Vosse. A model for arterial adaptation combining microstructural collagen remodelling and 3D tissue growth. Biomech. Model. Mechanobiol. 9:671–687, 2010.

    Article  Google Scholar 

  109. Massoudi, M., and T. X. Phuoc. Pulsatile flow of blood using a modified second-grade fluid model. Comput. Math. Appl. 56:199–211, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  110. McQueen, D. M., and C. S. Peskin. A three-dimensional computer model of the human heart for studying cardiac fluid dynamics. SIGGRAPH Comput. Graph. 34:56–60, 2000.

    Article  Google Scholar 

  111. Middleman, S. 1972. Transport Phenomena in the Cardiovascular System. 1st ed. John Wiley and Sons.

  112. Migliavacca, F., G. Dubini, E. L. Bove, and M. R. de Leval. Computational fluid dynamics simulations in realistic 3-D geometries of the total cavopulmonary anastomosis: the influence of the inferior caval anastomosis. J. Biomech. Eng. 125(6):805–813, 2003.

    Article  Google Scholar 

  113. Migliavacca, F., G. Dubini, and M. de Leval. Computational fluid dynamics in paediatric cardiac surgery. Images Paediatr. Cardiol. 2:11–25, 2000.

    Google Scholar 

  114. Moireau, P., C. Bertoglio, N. Xiao, C. A. Figueroa, C. A. Taylor, D. Chapelle, and J. F. Gerbeau. Sequential identification of boundary support parameters in a fluid-structure vascular model using patient data. Biomech. Model. Mechanobiol. 2012. doi:10.1007/s10237-012-0418-3.

    MATH  Google Scholar 

  115. Moireau, P., N. Xiao, M. Astorino, C. A. Figueroa, D. Chapelle, C. A. Taylor, and J. F. Gerbeau. External tissue support and fluid-structure simulation in blood flows. Biomech. Model. Mechanobiol. 11:1–18, 2012.

    Article  Google Scholar 

  116. Moore, J., C. Xu, S. Glagov, C. K. Zarins, and D. N. Ku. Fluid wall shear stress measurements in a model of the human abdominal aorta: oscillatory behavior and relationship to atherosclerosis. Atherosclerosis 110(2):225–240, 1994.

    Article  Google Scholar 

  117. Morbiducci, U., R. Ponzini, D. Gallo, C. Bignardi, and G. Rizzo. Inflow boundary conditions for image-based computational hemodynamics: impact of idealized versus measured velocity profiles in the human aorta. J. Biomech. 46:102–109, 2013.

    Article  Google Scholar 

  118. Morbiducci, U., R. Ponzini, G. Rizzo, M. Cadioli, A. Esposito, F. De Cobelli, A. Del Maschio, F. M. Montevecchi, and A. Redaelli. In vivo quantification of helical blood flow in human aorta by time-resolved three-dimensional cine phase contrast magnetic resonance imaging. Ann. Biomed. Eng. 37:516–531, 2009.

    Article  Google Scholar 

  119. Morbiducci, U., R. Ponzini, G. Rizzo, M. Cadioli, A. Esposito, F. M. Montevecchi, and A. Redaelli. Mechanistic insight into the physiological relevance of helical blood flow in the human aorta. An in vivo study. Biomech. Model. Mechanobiol. 10:339–355, 2011.

    Article  Google Scholar 

  120. Mori, D., T. Hayasaka, and T. Yamaguchi. Modelling of the human aortic arch with its major branches for computational fluid dynamics simulation of the blood flow. JSME C-45(4):997–1002, 2002.

    Google Scholar 

  121. Mori, D., and T. Yamaguchi. Computational fluid dynamics modelling and analysis of the effect of 3-D distortion of the human aortic arch. Comput. Methods Biomech. Biomed. Eng. 5:249–260, 2002.

    Article  Google Scholar 

  122. Morris, L., P. Delassus, A. Callanan, M. Walsh, F. Wallis, P. Grace, and T. McGloughlin. 3-D numerical simulation of blood flow through models of the human aorta. J. Biomech. Eng. 127:767–775, 2005.

    Article  Google Scholar 

  123. Morris, L., P. Delassus, P. Grace, F. Wallis, M. Walsh, and T. McGloughlin. Effects of flat, parabolic and realistic steady flow inlet profiles on idealised and realistic stent graft fits through abdominal aortic aneurysms (AAA). Med. Eng. Phys. 28:19–26, 2006.

    Article  Google Scholar 

  124. Moyle, K. R., L. Antiga, and D. A. Steinman. Inlet conditions for image-based CFD models of the carotid bifurcation: is it reasonable to assume fully developed flow? J. Biomech. Eng. 128(3):371–379, 2006.

    Article  Google Scholar 

  125. Muller, J., O. Sahni, X. Li, K. E. Jansen, M. S. Shephard, and C. A. Taylor. Anisotropic adaptive finite element method for modelling blood flow. Comput. Methods Biomech. Biomed. Eng. 8:295–305, 2005.

    Article  Google Scholar 

  126. Murray, C. D. The physiological principle of minimum work: 1. The vascular system and the cost of blood volume. Proc. Natl. Acad. Sci. 12:207–214, 1926.

    Article  Google Scholar 

  127. Myers, J. G., J. A. Moore, M. Ojha, K. W. Johnston, and C. R. Ethier. Factors influencing blood flow patterns in the human right coronary artery. Ann. Biomed. Eng. 29(2):109–120, 2001.

    Article  Google Scholar 

  128. Narang, B. S. Exact solution for entrance region flow between parallel plates. Int. J. Heat Fluid. Flow. 4:177–181, 1983.

    Article  Google Scholar 

  129. Naruse, T., and K. Tanishita. Large curvature effect on pulsatile flow in a curved tube: model experiment simulating blood flow in an aortic arch. J. Biomech. Eng. 118:180–186, 1996.

    Article  Google Scholar 

  130. Navon, I. M. Data assimilation for atmospheric, oceanic, hydrologic applications. Data Assimilation for Numerical Weather Prediction: A Review. Berlin: Springer, 2009, pp. 21–65.

  131. Nerem, R. M., J. A. Rumberger, D. R. Gross, R. L. Hamlin, and G. L. Geiger. Hot-film anemometry velocity measurements of arterial blood flow in horses. CircRes. 10:301–313, 1974.

    Google Scholar 

  132. Nerem, R. M., W. A. Seed, and N. B. Wood. An experimental study of the velocity distribution and transition to turbulence in the aorta. J. Fluid Mech. 52:137–160, 1972.

    Article  Google Scholar 

  133. Nielsen, L. B. Transfer of low density lipoprotein into the arterial wall and risk of atherosclerosis. Atherosclerosis 123:1–15, 1996.

    Article  Google Scholar 

  134. Nordsletten, D., S. Niederer, M. Nash, P. Hunter, and N. Smith. Coupling multi-physics models to cardiac mechanics. Prog. Biophys. Mol. Biol. 104:77–88, 2011.

    Article  Google Scholar 

  135. Ogawa, S., H. Gerlach, C. Esposito, A. Pasagian-Macaulay, J. Brett, and D. Stern. Hypoxia modulates the barrier and coagulant function of cultured bovine endothelium. Increased monolayer permeability and induction of procoagulant properties. J. Clin. Investig. 85:1090–1098, 1990.

    Article  Google Scholar 

  136. Ohta, M., S. G. Wetzel, P. Dantan, C. Bachelet, K. O. Lovblad, H. Yilmaz, P. Flaud, and D. A. Rüfenacht. Rheological changes after stenting of a cerebral aneurysm: a finite element modelling approach. Cardiovasc. Intervent. Radiol. 28:768–772, 2005.

    Article  Google Scholar 

  137. Okamoto, R., M. Hatani, M. Tsukitani, A. Suehiro, M. Fujino, N. Imai, S. Takano, Y. Watanabe, and H. Fukuzaki. The effect of oxygen on the development of atherosclerosis in WHHL rabbits. Atherosclerosis 47:47–53, 1983.

    Article  Google Scholar 

  138. Olivieri, L. J., D. A. de Zélicourt, C. M. Haggerty, K. Ratnayaka, R. R. Cross, and A. P. Yoganathan. Hemodynamic modelling of surgically repaired coarctation of the aorta. Cardiovasc. Eng. Technol. 2(4):288–295, 2011.

    Article  Google Scholar 

  139. Olufsen, M. S., C. S. Peskin, W. Y. Kim, E. M. Pedersen, A. Nadim, and J. Larsen. Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Ann. Biomed. Eng. 28(11):1281–1299, 2000.

    Article  Google Scholar 

  140. Oshima, M., R. Torii, T. Kobayashi, N. Taniguchi, and K. Takagi. Finite element simulation of blood flow in the cerebral artery. Comput. Methods Appl. Mech. Eng. 191:661–671, 2001.

    Article  MATH  Google Scholar 

  141. Owens, R. G. A new microstructure-based constitutive model for human blood. J. Non-Newton Fluid Mech. 140:57–70, 2006.

    Article  MATH  Google Scholar 

  142. Papadakis, G. Coupling 3D and 1D fluid-structure-interaction models for wave propagation in flexible vessels using a finite volume pressure-correction scheme. Commun. Numer. Methods Eng. 25(5):533–551, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  143. Park, Y. J., C. Y. Park, C. M. Hwang, K. Sun, and B. G. Min. Pseudo-organ boundary conditions applied to a computational fluid dynamics model of the human aorta. Comput. Biol. Med. 37(8):1063–1072, 2007.

    Article  Google Scholar 

  144. Parker, K. H., and C. G. Caro. Magnetic resonance angiography, concepts and applications. Mosby, St. Louis. Chapter 6, Flow in the Macrocirculation: Basic Concepts from Fluid Mechanics, 1993.

  145. Paul, M. C., M. Mamun Molla, and G. Roditi. Large-Eddy simulation of pulsatile blood flow. Med. Eng. Phys. 31:153–159, 2009.

    Article  Google Scholar 

  146. Peacock, J., T. Jones, C. Tock, and R. Lutz. The onset of turbulence in physiological pulsatile flow in a straight tube. Exp. Fluids 24:1–9, 1998.

    Article  Google Scholar 

  147. Pedley, T. J. The Fluid Mechanics of Large Blood Vessels. Cambridge: Cambridge University Press, 1980.

    Book  MATH  Google Scholar 

  148. Perktold, K., and G. Rappitsch. Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. J. Biomech. 28:845–856, 1995.

    Article  Google Scholar 

  149. Peskin, C. S. Flow patterns around heart valves: a numerical method. J. Comput. Phys. 10:252–271, 1972.

    Article  MathSciNet  MATH  Google Scholar 

  150. Peskin, C. S. Numerical analysis of blood flow in the heart. J. Comput. Phys. 25:220–252, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  151. Peskin, C. S. The immersed boundary method. Acta Numer. 11:479–517, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  152. Prakash, S., and C. R. Ethier. Requirements for mesh resolution in 3D computational hemodynamics. J. Biomech. Eng. 123:134–144, 2001.

    Article  Google Scholar 

  153. Prosi, M., K. Perktold, Z. H. Ding, and M. H. Friedman. Influence of curvature dynamics on pulsatile coronary artery flow in a realistic bifurcation model. J. Biomech. 37:1767–1775, 2004.

    Article  Google Scholar 

  154. Quarteroni, A. Numerical models for differential problems. 1st ed. Modelling, Simulation and Applications. Springer, 2009.

  155. Quarteroni, A., S. Ragni, and A. Veneziani. Coupling between lumped and distributed models for blood flow problems. Comput. Vis. Sci. 4(2):111–124, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  156. Quarteroni, A., and A. Veneziani. Analysis of a geometrical multiscale model based on the coupling of ODEs and PDEs for blood flow simulations. Multiscale Model Simul. 1(2):173–195, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  157. Rachev, A., N. Stergiopulos, and J. J. Meister. A model for geometric and mechanical adaptation of arteries to sustained hypertension. J. Biomech. Eng. 120:9–17, 1998.

    Article  Google Scholar 

  158. Rayz, V. L., L. Boussel, G. Acevedo-Bolton, A. J. Martin, W. L. Young, M. T. Lawton, R. Higashida, and D. Saloner. Numerical simulations of flow in cerebral aneurysms: comparison of CFD results and in vivo MRI measurements. J. Biomech. Eng. 130(5):051011, 2008.

    Article  Google Scholar 

  159. Renner, J., R. Gardhagen, E. Heiberg, T. Ebbers, D. Loyd, T. Länne, and M. Karlsson. A method for subject specific estimation of aortic wall shear stress. WSEAS Trans. Biol. Biomed. 6(3):49–57, 2009.

    Google Scholar 

  160. Renner, J., D. Loyd, T. Lanne, and M. Karlsson. Is a flat inlet profile sufficient for WSS estimation in the aortic arch? WSEAS Trans. Fluid Mech. 4(4):148–160, 2009.

    Google Scholar 

  161. Resnick, N., H. Yahav, A. Shay-Salit, M. Shushy, S. Schubert, L. C. Zilberman, and E. Wofovitz. Fluid shear stress and the vascular endothelium: for better and for worse. Prog. Biophys. Mol. Biol. 81(3):177–199, 2003.

    Article  Google Scholar 

  162. Reymond, P., P. Crosetto, S. Deparis, A. Quarteroni, and N. Stergiopulos. Physiological simulation of blood flow in the aorta: Comparison of hemodynamic indices as predicted by 3-D FSI, 3-D rigid wall and 1-D models. Med. Eng. Phys. 2012. doi:10.1016/j.medengphy.2012.08.009.

  163. Roache, P. J. Quantification of uncertainty in computational fluid dynamics. Annu. Rev. Fluid Mech. 29:123–160, 1997.

    Article  MathSciNet  Google Scholar 

  164. Roache, P. J. Verification and Validation in Computational Science and Engineering. Albuquerque, NM: Hermosa Publishers, 1998.

    Google Scholar 

  165. Ross, R., and L. Harker. Hyperlipidemia and atherosclerosis. Science 193:1094–1100, 1976.

    Article  Google Scholar 

  166. Ryval, J., A. G. Straatman, and D. A. Steinman. Two-equation turbulence modelling of pulsatile flow in a stenosed tube. J. Biomech. Eng. 126:625–635, 2004.

    Article  Google Scholar 

  167. Sahni, O., K. E. Jansen, M. S. Shephard, C. A. Taylor, and M. W. Beall. Adaptive boundary layer meshing for viscous flow simulations. Eng. Comput. 24:267–285, 2008.

    Article  Google Scholar 

  168. Sahni, O., J. Muller, K. E. Jansen, M. S. Shephard, and C. A. Taylor. Efficient anisotropic adaptive discretization of the cardiovascular system. Comput. Methods Appl. Mech. Eng. 195:5634–5655, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  169. Sankar, D. S., and K. Hemalatha. Pulsatile flow of Herschel–Bulkley fluid through catheterized arteries—a mathematical model. Appl. Math. Model. 31:1497–1517, 2007.

    Article  MATH  Google Scholar 

  170. Santamarina, A., E. Weydahl, J. M. Siegel, and J. E. Moore. Computational analysis of flow in a curved tube model of the coronary arteries: effects of time-varying curvature. Ann. Biomed. Eng. 26(6):944–954, 1998.

    Article  Google Scholar 

  171. Santilli, S. M., R. B. Stevens, J. G. Anderson, W. D. Payne, and M. D. Caldwell. Transarterial wall oxygen gradients at the dog carotid bifurcation. Am. J. Physiol. 268:H155–H161, 1995.

    Google Scholar 

  172. Seed, W. A., and N. B. Wood. Velocity patterns in the aorta. Cardiovasc. Res. 5:319–330, 1971.

    Article  Google Scholar 

  173. Segers, P., N. Stergiopulos, N. Westerhof, P. Wouters, P. Kolh, and P. Verdonck. Systemic and pulmonary hemodynamics assessed with a lumped-parameter heart arterial interaction model. J. Eng. Math. 47(3):185–199, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  174. Shahcheraghi, N., H. A. Dwyer, A. Y. Cheer, A. I. Barakat, and T. Rutanganira. Unsteady and three-dimensional simulation of blood flow in the human aortic arch. J. Biomech. Eng. 124(4):378–387, 2002.

    Article  Google Scholar 

  175. Sheidaei, A., S. C. Hunley, S. Zeinali-Davarani, L. G. Raguin, and S. Baek. Simulation of abdominal aortic aneurysm growth with updating hemodynamic loads using a realistic geometry. Med. Eng. Phys. 33:80–88, 2011.

    Article  Google Scholar 

  176. Sherwin, S. J., and H. M. Blackburn. Three-dimensional instabilities and transition of steady and pulsatile axisymmetric stenotic flows. J. Fluid Mech. 533:297–327, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  177. Shi, Y., P. Lawford, and R. Hose. Review of zero-D and 1-D models of blood flow in the cardiovascular system. BioMed. Eng. OnLine 10:1–38, 2011.

    Article  Google Scholar 

  178. Sluimer, J. C., J. M. Gasc, J. L. van Wanroij, N. Kisters, M. Groeneweg, M. D. Sollewijn Gelpke, J. P. Cleutjens, L. H. van den Akker, P. Corvol, B. G. Wouters, M. J. Daemen, and A. P. Bijnens. Hypoxia, hypoxia-inducible transcription factor, and macrophages in human atherosclerotic plaques are correlated with intraplaque angiogenesis. J. Am. Coll. Cardiol. 51(13):1258–1265, 2008.

    Article  Google Scholar 

  179. Soulis, J. V., D. K. Fytanidis, V. C. Papaioannou, H. Styliadis, and G. D. Giannoglou. Oscillating LDL accumulation in normal human aortic arch - shear dependent endothelium. Hippokratia 15:22–25, 2011.

    Google Scholar 

  180. Soulis, J. V., G. D. Giannoglou, M. Dimitrakopoulou, S. Logothetides, and D. Mikhailidis. Influence of oscillating flow on LDL transport and wall shear stress in the normal aortic arch. Open Cardiovasc. Med. J. 17:128–142, 2009.

    Article  Google Scholar 

  181. Spilker, R. L., and C. A. Taylor. Tuning multidomain hemodynamic simulations to match physiological measurements. Ann. Biomed. Eng. 38:2635–2648, 2010.

    Article  Google Scholar 

  182. Stalder, A. F., A. Frydrychowicz, M. F. Russe, J. G. Korvink, J. Hennig, K. Li, and M. Markl. Assessment of flow instabilities in the healthy aorta using flow-sensitive MRI. J. Magn. Reson. Imaging 33:839–846, 2011.

    Article  Google Scholar 

  183. Steele, B. N., M. S. Olufsen, and C. A. Taylor. Fractal network model for simulating abdominal and lower extremity blood flow during resting and exercise conditions. Comput. Methods Biomech. Biomed. Eng. 10:39–51, 2007.

    Article  Google Scholar 

  184. Stein, P. D., and H. N. Sabbah. Turbulent blood flow in the ascending aorta of humans with normal and diseased aortic valves. Circ. Res. 39:58–65, 1976.

    Article  Google Scholar 

  185. Steinman, D. A. Image-based computational fluid dynamics modelling in realistic arterial geometries. Ann. Biomed. Eng. 30:483–497, 2002.

    Article  Google Scholar 

  186. Sumida, M., K. Sudou, and H. Wada. Pulsating flow in a curved pipe-secondary flow. JSME Int. J. Ser. II. 32(4):523–531, 1989.

    Google Scholar 

  187. Taber, L. A. A model of aortic growth based on fluid shear and fiber stresses. J. Biomech. Eng. 120:348–354, 1998.

    Article  Google Scholar 

  188. Tan, F. P. P., R. Torii, A. Borghi, R. H. Mohiaddin, N. B. Wood, S. Thom, and X. Y. Xu. Analysis of flow patterns in a patient-specific thoracic aortic aneurysm model. Comput. Struct. 87:680–690, 2009.

    Article  Google Scholar 

  189. Tan, F. P. P., N. B. Wood, G. Tabor, and X. Y. Xu. Comparison of LES of steady transitional flow in an idealized stenosed axisymmetric artery model with a RANS transitional model. J. Biomech. Eng. 133:051001, 2011.

    Article  Google Scholar 

  190. Tarbell, J. M. Mass transport in arteries and the localization of atherosclerosis. Annu. Rev. Biomed. Eng. 5:79–118, 2003.

    Article  Google Scholar 

  191. Taylor, C. A., C. P. Cheng, L. A. Espinosa, B. T. Tang, D. Parker, and R. J. Herfkens. In vivo quantification of blood flow and wall shear stress in the human abdominal aorta during lower limb exercise. Ann. Biomed. Eng. 30:402–408, 2002.

    Article  Google Scholar 

  192. Taylor, C. A., and C. A. Figueroa. Patient-specific modelling of cardiovascular mechanics. Annu. Rev. Biomed. Eng. 11:109–134, 2009.

    Article  Google Scholar 

  193. Taylor, C. A., T. J. R. Hughes, and C. K. Zarins. Finite element modelling of blood flow in arteries. Comput. Methods Appl. Mech. Eng. 158:155–196, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  194. Taylor, C. A., and D. A. Steinman. Image-based modelling of blood flow and vessel wall dynamics: applications, methods and future directions. Ann. Biomed. Eng. 38:1188–1203, 2010.

    Article  Google Scholar 

  195. Thurston, G. B. Viscoelasticity of human blood. Biophys. J. 12:1205–1217, 1972.

    Article  Google Scholar 

  196. Tse, K. M., P. Chiu, H. P. Lee, and P. Ho. Investigation of hemodynamics in the development of dissecting aneurysm within patient-specific dissecting aneurismal aortas using computational fluid dynamics (CFD) simulations. J. Biomech. 44(5):827–836, 2011.

    Article  Google Scholar 

  197. Urquiza, S. A., P. J. Blanco, M. J. Venere, and R. A. Feijoo. Multidimensional modelling for the carotid artery blood flow. Comput. Methods Appl. Mech. Eng. 195:4002–4017, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  198. Utepov, Y. Y. Correlation between anatomic parameters of the aorta and manifestations of atherosclerosis. Bull. Exp. Biol. Med. 124(8):729–734, 1997.

    Article  Google Scholar 

  199. Van de Vosse, F. N., J. de Hart, C. H. G. A. van Oijen, D. Bessems, A. Segal, B. J. B. M. Wolters, J. M. A. Stijnen, and F. P. T. Baaijens. Finite-element-based computational methods for cardiovascular fluid-structure interaction. J. Eng. Math. 47:335–368, 2003.

    Article  MATH  Google Scholar 

  200. Varghese, S. S., and S. H. Frankel. Numerical modelling of pulsatile turbulent flow in stenotic vessels. J. Biomech. Eng. 125:445–460, 2003.

    Article  Google Scholar 

  201. Varghese, S. S., S. H. Frankel, and P. F. Fischer. Modelling transition to turbulence in eccentric stenotic flows. J. Biomech. Eng. 130:014503, 2008.

    Article  Google Scholar 

  202. Vasava, P., P. Jalali, M. Dabagh, and P. Kolari. Finite element modelling of pulsatile blood flow in idealized model of human aortic arch: study of hypotension and hypertension. Comput. Math. Methods Med. 2012. doi:10.1155/2012/861837.

    MathSciNet  MATH  Google Scholar 

  203. Versteeg, H. K., and W. Malalasekera. An Introduction to Computational Fluid Dynamics: The Finite Volume Method. 2nd ed. Pearson Education Limited, 2007.

  204. Vignon-Clementel, I. E., C. A. Figueroa, K. E. Jansen, and C. A. Taylor. Outflow boundary conditions for three-dimensional finite element modelling of blood flow and pressure in arteries. Comput. Methods Appl. Mech. Eng. 195:3776–3796, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  205. Vignon-Clementel, I. E., C. A. Figueroa, K. E. Jansen, and C. A. Taylor. Outflow boundary conditions for three-dimensional simulations of non-periodic blood flow and pressure fields in deformable arteries. Comput. Methods Biomech. Biomed. Eng. 13:625–640, 2010.

    Article  Google Scholar 

  206. Wada, S., and T. Karino. Theoretical prediction of low-density lipoproteins concentration at the luminal surface of an artery with a multiple bend. Ann. Biomed. Eng. 30(6):778–791, 2002.

    Article  Google Scholar 

  207. Wahle, A., J. J. Lopez, M. E. Olszewski, S. C. Vigmostad, K. B. Chandran, J. D. Rossen, and M. Sonka. Plaque development, vessel curvature, and wall shear stress in coronary arteries assessed by X-ray angiography and intravascular ultrasound. Med. Image Anal. 10(4):615–631, 2006.

    Article  Google Scholar 

  208. Wang, C. Y. Exact solutions of the steady-state Navier-Stokes equations. Annu. Rev. Fluid Mech. 23:159–177, 1991.

    Article  Google Scholar 

  209. Wang, X., and X. Li. Biomechanical behaviors of curved artery with flexible wall: a numerical study using fluid-structure interaction method. Comput. Biol. Med. 41(11):1014–1021, 2011.

    Article  Google Scholar 

  210. Wang, X., and X. Li. Computational simulation of aortic aneurysm using FSI method: influence of blood viscosity on aneurismal dynamic behaviors. Comput. Biol. Med. 41(9):812–821, 2011.

    Article  Google Scholar 

  211. Waters, S. L., and T. J. Pedley. Oscillatory flow in a tube of time-dependent curvature. Part 1. Perturbation to flow in a stationary curved tube. J. Fluid Mech. 383:327–352, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  212. Watton, P. N., N. A. Hill, and M. Heil. A mathematical model for the growth of the abdominal aortic aneurysm. Biomech. Model. Mechanobiol. 3:98–113, 2004.

    Article  Google Scholar 

  213. Wen, C. Y., A. S. Yang, L. Y. Tseng, and J. W. Chai. Investigation of pulsatile flow field in healthy thoracic aorta models. Ann. Biomed. Eng. 38(2):391–402, 2010.

    Article  Google Scholar 

  214. Wendell, D. C., M. M. Samyn, J. R. Cava, L. M. Ellwein, M. M. Krolikowski, K. L. Gandy, A. N. Pelech, S. C. Shadden, and J. F. LaDisa, Jr. Including aortic valve morphology in computational fluid dynamics simulations: initial findings and application to aortic coarctation. Med. Eng. Phys. 2012. doi:10.1016/j.medengphy.2012.07.015.

  215. White, C. R., and J. A. Frangos. The shear stress of it all: the cell membrane and mechanochemical transduction. Philos. Trans. R. Soc. B. 362:1459–1467, 2007.

    Article  Google Scholar 

  216. Wilson, J. S., S. Baek, and J. D. Humphrey. Importance of initial aortic properties on the evolving regional anisotropy, stiffness, and wall thickness of human abdominal aortic aneurysms. J. R. Soc. Interface 2012. doi:10.1098/rsif.2012.0097.

    Google Scholar 

  217. Womersley, J. R. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure is known. J. Physiol. 127:553–563, 1955.

    Google Scholar 

  218. Yoganathan, A. P., K. B. Chandran, and F. Sotiropoulos. Flow in prosthetic heart valves: state-of-the-art and future directions. Ann. Biomed. Eng. 33:1689–1694, 2005.

    Article  Google Scholar 

  219. Zaman, G., S. Islam, Y. H. Kang, and H. Jung. Blood flow of an Oldroyd-B fluid in a blood vessel incorporating a Brownian stress. Sci. China Phys. Mech. Astron. 55:125–131, 2012.

    Article  Google Scholar 

Download references

Acknowledgments

A.D. Caballero was supported by the COLCIENCIAS Young Researcher Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Laín.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

A.D. Caballero and S. Laín equally contribute to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caballero, A.D., Laín, S. A Review on Computational Fluid Dynamics Modelling in Human Thoracic Aorta. Cardiovasc Eng Tech 4, 103–130 (2013). https://doi.org/10.1007/s13239-013-0146-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-013-0146-6

Keywords

Navigation