Skip to main content

Advertisement

Log in

Supraceliac and Infrarenal Aortic Flow in Patients with Abdominal Aortic Aneurysms: Mean Flows, Waveforms, and Allometric Scaling Relationships

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose Hemodynamic forces are thought to play a critical role in abdominal aortic aneurysm (AAA) growth. In silico and in vitro simulations can be used to study these forces, but require accurate aortic geometries and boundary conditions. Many AAA simulations use patient-specific geometries, but utilize inlet boundary conditions taken from a single, unrelated, healthy young adult. Methods In this study, we imaged 43 AAA patients using a 1.5 T MR scanner. A 24-frame cardiac-gated one-component phase-contrast magnetic resonance imaging sequence was used to measure volumetric flow at the supraceliac (SC) and infrarenal (IR) aorta, where flow information is typically needed for simulation. For the first 36 patients, individual waveforms were interpolated to a 12-mode Fourier curve, peak-aligned, and averaged. Allometric scaling equations were derived from log–log plots of mean SC and IR flow vs. body mass, height, body surface area (BSA), and fat-free body mass. The data from the last seven patients were used to validate our model. Results Both the SC and IR averaged waveforms had the biphasic shapes characteristic of older adults, and mean SC and IR flows over the cardiac cycle were 51.2 ± 10.3 and 17.5 ± 5.44 mL/s, respectively. Linear regression of the log–log plots revealed that BSA was most strongly predictive of mean SC (R2 = 0.29) and IR flow (R2 = 0.19), with the highest combined R2. When averaged, the measured and predicted waveforms for the last seven patients agreed well. Conclusions We present a method to estimate SC and IR mean flows and waveforms for AAA simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6

Similar content being viewed by others

References

  1. Bax, L., C. J. Bakker, W. M. Klein, N. Blanken, J. J. Beutler, and W. P. Mali. Renal blood flow measurements with use of phase-contrast magnetic resonance imaging: normal values and reproducibility. J. Vasc. Interv. Radiol. 16:807–814, 2005.

    Google Scholar 

  2. Bosma, R. J., J. J. H. van der Heide, E. J. Oosterop, P. E. de Jong, and G. Navis. Body mass index is associated with altered renal hemodynamics in non-obese healthy subjects. Kidney Int. 65:259–265, 2004.

    Article  Google Scholar 

  3. Cheng, C. P., R. J. Herfkens, and C. A. Taylor. Abdominal aortic hemodynamic conditions in healthy subjects aged 50–70 at rest and during lower limb exercise: in vivo quantification using MRI. Atherosclerosis 168:323–331, 2003.

    Article  Google Scholar 

  4. Cheng, C. P., R. J. Herfkens, and C. A. Taylor. Comparison of abdominal aortic hemodynamics between men and women at rest and during lower limb exercise. J. Vasc. Surg. 37:118–123, 2003.

    Article  Google Scholar 

  5. Dalman, R. L., M. M. Tedesco, J. Myers, and C. A. Taylor. AAA disease: mechanism, stratification, and treatment. Ann. NY Acad. Sci. 1085:92–109, 2006.

    Article  Google Scholar 

  6. de Simone, G., R. B. Devereux, S. R. Daniels, G. Mureddu, M. J. Roman, T. R. Kimball, R. Greco, S. Witt, and F. Contaldo. Stroke volume and cardiac output in normotensive children and adults. Assessment of relations with body size and impact of overweight. Circulation 95:1837–1843, 1997.

    Google Scholar 

  7. Draney, M. T., C. K. Zarins, and C. A. Taylor. Three-dimensional analysis of renal artery bending motion during respiration. J. Endovasc. Ther. 12:380–386, 2005.

    Article  Google Scholar 

  8. Evans, A. J., F. Iwai, T. A. Grist, H. D. Sostman, L. W. Hedlund, C. E. Spritzer, R. Negrovilar, C. A. Beam, and N. J. Pelc. Magnetic resonance imaging of blood-flow with a phase subtraction technique—in vitro and in vivo validation. Invest. Radiol 28:109–115, 1993.

    Article  Google Scholar 

  9. Feldman, H. A., and T. A. McMahon. The 3/4 mass exponent for energy metabolism is not a statistical artifact. Respir. Physiol. 52:149–163, 1983.

    Article  Google Scholar 

  10. Figueroa, C. A., C. A. Taylor, V. Yeh, A. J. Chiou, and C. K. Zarins. Effect of curvature on displacement forces acting on aortic endografts: a 3-dimensional computational analysis. J. Endovasc. Ther. 16:284–294, 2009.

    Article  Google Scholar 

  11. Fraser, K. H., S. Meagher, J. R. Blake, W. J. Easson, and P. R. Hoskins. Characterization of an abdominal aortic velocity waveform in patients with abdominal aortic aneurysm. Ultrasound Med. Biol. 34:73–80, 2008.

    Article  Google Scholar 

  12. Garrow, J. S., and J. Webster. Quetelet index (w/h 2) as a measure of fatness. Int. J. Obes. 9:147–153, 1985.

    Google Scholar 

  13. Greve, J. M., A. S. Les, B. T. Tang, M. T. Draney Blomme, N. M. Wilson, R. L. Dalman, N. J. Pelc, and C. A. Taylor. Allometric scaling of wall shear stress from mice to humans: quantification using cine phase-contrast MRI and computational fluid dynamics. Am. J. Physiol. Heart Circ. Physiol. 291:H1700–H1708, 2006.

    Article  Google Scholar 

  14. Holenstein, R., and D. N. Ku. Reverse flow in the major infrarenal vessels—a capacitive phenomenon. Biorheology 25:835–842, 1988.

    Google Scholar 

  15. Kim, B., J. S. Soble, T. D. Stamos, A. Neumann, and J. Roberge. Automated volumetric flow quantification using angle-corrected color Doppler image. Echocardiography 21:399–408, 2004.

    Article  Google Scholar 

  16. Ku, J. P. Numerical and Experimental Investigations of Blood Flow with Application to Vascular Bypass Surgeries. Stanford: Stanford University, 2003.

    Google Scholar 

  17. Ku, J. P., C. J. Elkins, and C. A. Taylor. Comparison of CFD and MRI flow and velocities in an in vitro large artery bypass graft model. Ann. Biomed. Eng. 33:257–269, 2005.

    Article  Google Scholar 

  18. Lederle, F. A., G. R. Johnson, S. E. Wilson, E. P. Chute, F. N. Littooy, D. Bandyk, W. C. Krupski, G. W. Barone, C. W. Acher, and D. J. Ballard. Prevalence and associations of abdominal aortic aneurysm detected through screening. Ann. Intern. Med. 126:441–449, 1997.

    Google Scholar 

  19. Les, A. S., S. C. Shadden, C. A. Figueroa, J. M. Park, M. M. Tedesco, R. J. Herfkens, R. L. Dalman, and C. A. Taylor. Quantification of hemodynamics in abdominal aortic aneurysms during rest and exercise using magnetic resonance imaging and computational fluid dynamics. Ann. Biomed. Eng., 2010, accepted.

  20. Mills, C. J., I. T. Gabe, J. H. Gault, D. T. Mason, J. Ross, E. Braunwal, and J. P. Shilling. Pressure–flow relationships and vascular impedance in man. Cardiovasc. Res. 4:405–417, 1970.

    Article  Google Scholar 

  21. Mosteller, R. D. Simplified calculation of body-surface area. N Engl. J. Med. 317:1098–1098, 1987.

    Google Scholar 

  22. Olufsen, M. S., C. S. Peskin, W. Y. Kim, E. M. Pedersen, A. Nadim, and J. Larsen. Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Ann. Biomed. Eng. 28:1281–1299, 2000.

    Article  Google Scholar 

  23. Osada, T., N. Murase, R. Kime, K. Shiroishi, K. Shimomura, H. Nagata, and T. Katsumura. Arterial blood flow of all abdominal-pelvic organs using doppler ultrasound: range, variability and physiological impact. Physiol. Meas. 28:1303–1316, 2007.

    Article  Google Scholar 

  24. Papaharilaou, Y., D. J. Doorly, and S. J. Sherwin. Assessing the accuracy of two-dimensional phase-contrast MRI measurements of complex unsteady flows. J. Magn. Reson. Imaging 14:714–723, 2001.

    Article  Google Scholar 

  25. Schmidt-Nielsen, K. Scaling: Why Is Animal Size So Important? Cambridge: Cambridge University Press, 1984.

    Google Scholar 

  26. Tang, B. T., C. P. Cheng, M. T. Draney, N. M. Wilson, P. S. Tsao, R. J. Herfkens, and C. A. Taylor. Abdominal aortic hemodynamics in young healthy adults at rest and during lower limb exercise: quantification using image-based computer modeling. Am. J. Physiol. Heart Circ. Physiol. 291:H668–H676, 2006.

    Article  Google Scholar 

  27. van der Molen, A. J. Nephrogenic systemic fibrosis and the role of gadolinium contrast media. J. Med. Imaging Radiot. Oncol. 52:339–350, 2008.

    Article  Google Scholar 

  28. West, G. B., J. H. Brown, and B. J. Enquist. A general model for the origin of allometric scaling laws in biology. Science 276:122–126, 1997.

    Article  Google Scholar 

  29. Womersley, J. R. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127:553–563, 1955.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Julie White and Mary McElrath for their assistance with patient recruitment, and Sandra Rodriguez and Anne Sawyer for their assistance with imaging. This work was supported by the National Institutes of Health (P50 HL083800 and P41 RR09784).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles A. Taylor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Les, A.S., Yeung, J.J., Schultz, G.M. et al. Supraceliac and Infrarenal Aortic Flow in Patients with Abdominal Aortic Aneurysms: Mean Flows, Waveforms, and Allometric Scaling Relationships. Cardiovasc Eng Tech 1, 39–51 (2010). https://doi.org/10.1007/s13239-010-0004-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-010-0004-8

Keywords

Navigation