Skip to main content
Log in

On a Class of Hybrid Differential Games

  • Published:
Dynamic Games and Applications Aims and scope Submit manuscript

Abstract

This paper is intended to present a systematic application of the hybrid systems framework to differential games. A special class of bimodal linear-quadratic differential games is presented and illustrated with examples; two particular classes of switching rules, time-dependent and state-dependent switches are discussed. The main contribution of the paper consists in formulating necessary optimality conditions for determining optimal strategies in both cooperative and non-cooperative cases. A practically relevant hybrid differential game of pollution reduction is considered to illustrate the developed framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Obviously, in the case of minimization the respective matrices must be nonnegative and positive definite.

  2. Here and forth we will use standard notation: x(t) for the state, u(t) for the control and so on. This may contradict the established practice but will allow us to consider various problems in a uniform setting.

References

  1. Antsaklis P (2000) A brief introduction to the theory and applications of hybrid systems. Proc IEEE Spec Issue Hybrid Syst Theory Appl 88(7):879–886

    Google Scholar 

  2. Azhmyakov V, Attia S, Gromov D, Raisch J (2007) Necessary optimality conditions for a class of hybrid optimal control problems. In: Bemporad A, Bicchi A, Butazzo G (eds) HSCC 2007, LNCS 4416. Springer, Berlin, pp 637–640

    Google Scholar 

  3. Başar T (1976) On the uniqueness of the Nash solution in linear-quadratic differential games. Int J Game Theory 5(2–3):65–90

    MathSciNet  MATH  Google Scholar 

  4. Başar T, Olsder GJ (1999) Dynamic noncooperative game theory, vol 200, 2nd edn. SIAM, New York

    MATH  Google Scholar 

  5. Bardi M, Capuzzo-Dolcetta I (1997) Optimal control and viscosity solutions of Hamilton–Jacobi–Bellman equations. Birkhäuser

  6. Bellman R (1957) Dynamic programming. Princeton University Press, Princeton

    MATH  Google Scholar 

  7. Bellman R (1970) Introduction to matrix analysis, 2nd edn. McGraw-Hill Book Co., New York-Düsseldorf-London

    MATH  Google Scholar 

  8. Bernhard P, El Farouq N, Thiery S (2006) An impulsive differential game arising in finance with interesting singularities. Advances in dynamic games. Springer, Berlin, pp 335–363

    Chapter  Google Scholar 

  9. Bonneuil N, Boucekkine R (2016) Optimal transition to renewable energy with threshold of irreversible pollution. Eur J Oper Res 248(1):257–262

    Article  MathSciNet  MATH  Google Scholar 

  10. Branicky M, Borkar V, Mitter S (1998) A unified framework for hybrid control: model and optimal control theory. IEEE Trans Autom Control 43(1):31–45

    Article  MathSciNet  MATH  Google Scholar 

  11. Breton M, Zaccour G, Zahaf M (2005) A differential game of joint implementation of environmental projects. Automatica 41(10):1737–1749

    Article  MathSciNet  MATH  Google Scholar 

  12. Caines PE, Egerstedt M, Malhamé R, Schoellig A (2007) A hybrid Bellman equation for bimodal systems. In: Bemporad A, Bicchi A, Butazzo G (eds) HSCC 2007, LNCS 4416. Springer, Berlin, pp 656–659

    Google Scholar 

  13. Dockner E, Jorgensen S, Van Long N, Sorger G (2000) Differential games in economics and management science. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  14. El Ouardighi F, Benchekroun H, Grass D (2014) Controlling pollution and environmental absorption capacity. Ann Oper Res 220(1):111–133

    Article  MathSciNet  MATH  Google Scholar 

  15. Engwerda J (2005) LQ dynamic optimization and differential games. Wiley, Hoboken

    Google Scholar 

  16. Fabra N, García A (2015) Dynamic price competition with switching costs. Dyn Games Appl 5(4):540–567

    Article  MathSciNet  MATH  Google Scholar 

  17. Fleming W, Rishel R (1975) Deterministic and stochastic optimal control, applications of mathematics, vol 1. Springer, New York

    Book  MATH  Google Scholar 

  18. Goebel R, Sanfelice R, Teel A (2009) Hybrid dynamical systems. IEEE Control Syst Mag 29(2):28–93

    Article  MathSciNet  Google Scholar 

  19. Grass D, Caulkins JP, Feichtinger G, Tragler G, Behrens DA (2008) Optimal control of nonlinear processes. With applications in drugs, corruption, and terror. Springer, Berlin

    Book  MATH  Google Scholar 

  20. Gromov D, Gromova E (2014) Differential games with random duration: a hybrid systems formulation. In: Petrosyan LA, Zenkevich NA (eds) Contributions to game theory and management, vol VII. Graduate School of Management SPbU, St. Petersburg, Russia, pp 104–119

  21. Hull DG (2003) Optimal control theory for applications. Springer, Berlin

    Book  MATH  Google Scholar 

  22. Jørgensen S, Gromova E (2016) Sustaining cooperation in a differential game of advertising goodwill accumulation. Eur J Oper Res. doi:10.1016/j.ejor.2016.03.029

  23. Kononenko A (1980) The structure of the optimal strategy in controlled dynamic systems. USSR Comput Math Math Phys 20(5):13–24

    Article  MATH  Google Scholar 

  24. Kort PM, Wrzaczek S (2015) Optimal firm growth under the threat of entry. Eur J Oper Res 246(1):281–292

    Article  MathSciNet  MATH  Google Scholar 

  25. Lee EB, Markus L (1967) Foundations of optimal control theory. Wiley, Hoboken

    MATH  Google Scholar 

  26. Long NV, Prieur F, Puzon K, Tidball M (2014) Markov perfect equilibria in differential games with regime switching strategies. CESifo Working Paper Series No. 4662

  27. Lunze J, Lamnabhi-Lagarrigue F (2009) Handbook of hybrid systems control: theory, tools, applications. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  28. Lygeros J, Johansson K, Simic S, Zhang J, Sastry S (2003) Dynamical properties of hybrid automata. IEEE Trans Autom Control 48(1):2–17

    Article  MathSciNet  Google Scholar 

  29. Malafeev O (1977) Stationary strategies in differential games. USSR Comput Math Math Phys 17(1):37–46

    Article  MathSciNet  MATH  Google Scholar 

  30. Marín-Solano J, Shevkoplyas EV (2011) Non-constant discounting and differential games with random time horizon. Automatica 47(12):2626–2638

    Article  MathSciNet  MATH  Google Scholar 

  31. Masoudi N, Zaccour G (2013) A differential game of international pollution control with evolving environmental costs. Environ Dev Econ 18(06):680–700

    Article  Google Scholar 

  32. Morari M, Baotic M, Borrelli F (2003) Hybrid systems modeling and control. Eur J Control 9(2):177–189

    Article  MATH  Google Scholar 

  33. Petrosjan L, Zaccour G (2003) Time-consistent Shapley value allocation of pollution cost reduction. J Econ Dyn Control 27(3):381–398

    Article  MathSciNet  MATH  Google Scholar 

  34. Reddy P, Engwerda JC (2014) Necessary and sufficient conditions for Pareto optimality in infinite horizon cooperative differential games. IEEE Trans Autom Control 59(9):2536–2542

    Article  MathSciNet  Google Scholar 

  35. Reddy P, Zaccour G (2015) Open-loop Nash equilibria in a class of linear-quadratic difference games with constraints. IEEE Trans Autom Control 60(9):2559–2564

    Article  MathSciNet  Google Scholar 

  36. Reddy P, Schumacher J, Engwerda J (2015) Optimal management with hybrid dynamics—the shallow lake problem. Mathematical Control Theory I. Springer, Berlin, pp 111–136

    Chapter  Google Scholar 

  37. Riedinger P, Iung C, Kratz F (2003) An optimal control approach for hybrid systems. Eur J Control 9(5):449–458

    Article  MATH  Google Scholar 

  38. Seierstad A, Sydsæter K (1987) Optimal control theory with economic applications. Elsevier, North-Holland Inc, Amsterdam

    MATH  Google Scholar 

  39. Shaikh MS, Caines PE (2007) On the hybrid optimal control problem: theory and algorithms. IEEE Trans Autom Control 52(9):1587–1603 corrigendum: IEEE TAC, Vol. 54 (6), 2009, p 1428

  40. Shinar J, Glizer VY, Turetsky V (2007) A pursuit-evasion game with hybrid pursuer dynamics. In: Control Conference (ECC), 2007 European, IEEE, pp 1306–1313

  41. Shinar J, Glizer VY, Turetsky V (2009) A pursuit-evasion game with hybrid evader dynamics. In: Control Conference (ECC), 2009 European, IEEE, pp 121–126

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Gromov.

Additional information

D. Gromov acknowledges the Grants 9.50.1197.2014 and 9.41.721.2015 from St. Petersburg State University, E. Gromova acknowledges the Grant 9.38.245.2014 from St. Petersburg State University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gromov, D., Gromova, E. On a Class of Hybrid Differential Games. Dyn Games Appl 7, 266–288 (2017). https://doi.org/10.1007/s13235-016-0185-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13235-016-0185-3

Keywords

Navigation