Skip to main content
Log in

Functionally substituted derivatives of novel thiourea and phenylthiourea as potent aldose reductase, α-amylase, and α-glycosidase inhibitors: in vitro and in silico studies

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Phenylthiourea was synthesized for the first time with a yield of 75–80% based on thiourea, in the presence of various catalysts, and optimal conditions were identified for some reactions. At the same time, the condensation of their methylene-active molecules and various aldehydes in acidic media caused the synthesis of di-, tetra-, hexahydropyrimidinethiones, which are not known in the literature so far; the role of different catalysts in this process were comparatively studied. Synthesis of heterocyclic compounds containing phenol hydroxyl, mono-, dual-, triple-amine, -thion, and hydroxyl groups in the presence of ionic liquids, CCl3COOH CF3COOH, NiCl2.6H2O catalysts as well as in the increase of yield percentages showed that the use of environmentally and economically efficient ionic liquids among these catalysts allows to obtain purposeful compounds with the highest yield (95%). The inhibition of α-glycosidase, aldose reductase, and α-amylase enzymes by functionally substituted derivatives of thiourea and phenylthiourea (1a–1f) is then observed. Compound 1d displayed the lowest inhibitory  effect against AR in these series with an IC50 value of 3.25 µM, whereas compound 1c compound displayed the highest inhibitory  effect with an IC50 value of 1.46 µM. The enzymes α-amylase and α-glycosidase were also easily inhibited by these substances. All substances were examined for their capacity to inhibit the α-glycosidase enzyme, with Ki values ranging between 14.321.53 and 29.322.50 µM and IC50 values between 12.23 and 25.22 µM. Additionally, the IC50 values for the effective inhibition profile of the α-amylase, which was determined vary from 1.02 to 7.87 µM.

Graphical abstract

Enzyme inhibitor and docking of it

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Scheme 3.
Scheme 4.
Scheme 5.
Scheme 6.
Fig. 1

Similar content being viewed by others

References

  1. G. Jenner, Effect of high pressure on Biginelli reactions. Steric hindrance and mechanistic considerations. Tetrahedron Lett. 45, 6195–6198 (2004)

    Article  CAS  Google Scholar 

  2. J.-T. Li, J.-F. Han, J.-H. Yang, T.-S. Li, An efficient synthesis of 3,4-dihydropyrimidin-2-ones catalyzed by NH2SO3H under ultrasound irradiation. Ultrason. Sonochem. 10, 119–122 (2003)

    Article  CAS  PubMed  Google Scholar 

  3. A. Sudzhaev, R. Najafova, I. Rzayeva, Yu. Safarov, M. Allahverdiev, Study of the antioxidant properties of thiocarbamide derivatives of some amino alcohols. J. Appl. Chem. 84(8), 1329–1332 (2011)

    Google Scholar 

  4. V. Farzaliyev, A. Shuriberko, A. Sujayev, S. Osmanova, S. Gojayeva, K. Gahramanova, Synthesis, computational and biological activity of heteroatomic compounds based on phenylthiourea and acetophenone. J. Mol. Struct. 1221(9), 128844–128853 (2020)

    Article  CAS  Google Scholar 

  5. L. Wang, C. Qian, H. Tian, M. Yun, Lanthanide triflate catalyzed one-pot synthesis of dihydropyrimidin-2(1H)-thiones by a three-component of 1,3-dicarbonyl compounds, Aldehydes, and thiourea using a solvent-free Biginelli condensation. Synth. Commun. 33, 1459–1468 (2003)

    Article  CAS  Google Scholar 

  6. T. Laue, A. Plagens, Namen und Schlagwort-Reaktionen der Organischen Chemic. Taubner, https://www.amazon.de/Namen-Schlagwort-Reaktionen-Organischen-Teubner-Studienb%C3%BCcher/dp/3835100912 (2006)

  7. L. Jun, Y. Bai, Z. Wang, L. Jun, B. Yang, H. Ma, One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones using lanthanum chloride as a catalyst. Tetrahedron Lett. 41, 9075–9078 (2000)

    Article  Google Scholar 

  8. S. D. Bose, M. Sudharshan, W. Ch. Sanjay, New protocol for Biginelli reaction practical synthesis of Monastrol. Arkivoc. 3, 228–236 (2005)

    Article  Google Scholar 

  9. S. Sasaki, M. Mizuno, K. Naemura, Y. Tobe, Synthesis and anion-selective complexation of cyclophane-based cyclic thioureas. J. Org. Chem. 65, 275–283 (2000)

    Article  CAS  PubMed  Google Scholar 

  10. A. Sujayev, E. Garibov, P. Taslimi, I. Gulçin, S. Gojayeva, V. Farzaliyev, S. Alwasel, C.T. Supuran, Synthesis of some tetrahydropyrimidine-5-carboxylates, determination of their metal chelating effects and inhibition profiles against acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase. J. Enzyme Inhib. Med. Chem. 31(6), 1531–1539 (2016)

    Article  CAS  PubMed  Google Scholar 

  11. V. Farzaliyev, A. Sujayev, L. Kose, E. Garibov, İ Gülçin, V. Farzaliev, S. Alwasel, C. Supuran, Synthesis of N-Alkyl (Aril)-tetra pyrimidinethiones and investigation of their human carbonic anhydrase i and ii inhibitory effects. J. Enzyme Inhib. Med. Chem. 31(6), 1192–1197 (2016)

    Article  Google Scholar 

  12. N. M. Emanuel, E. T. Denisov, Z. K. Maizus, V. V. Fedorova, Illustrative reactions oxidation of hydrocarbons in the liquid phase. M.: Nauka, https://search.worldcat.org/title/liquid-phase-oxidation-of-hydrocarbons/oclc/1879057 (1967)

  13. Denisov, E.T. (1981) Rate Constants of Hemolytic Liquid-Phase Reactions. М.: Nauka, 711 (1981)

  14. C. Bailly, Moving toward a new horizon for the aldose reductase inhibitor epalrestat to treat drug-resistant cancer. Eur J Pharmacol. 931, 175191 (2022)

    Article  CAS  PubMed  Google Scholar 

  15. R.L. Bakal, R.D. Jawarkar, J.V. Manwar, M.S. Jaiswal, A. Ghosh, A. Gandhi et al., Identification of potent aldose reductase inhibitors as antidiabetic (Anti-hyperglycemic) agents using QSAR based virtual Screening, molecular Docking, MD simulation and MMGBSA approaches. Saudi Pharmaceut. J. 30(6), 693–710 (2022)

    Article  CAS  Google Scholar 

  16. F. Türkan, P. Taslimi, B. Cabir, M.S. Ağırtaş, Y. Erden, H.U. Celebioglu et al., Co and Zn Metal phthalocyanines with bulky substituents: anticancer, antibacterial activities and their inhibitory effects on some metabolic enzymes with molecular docking studies. Polycyclic Aromat. Compd. 42(7), 4475–4486 (2022)

    Article  Google Scholar 

  17. P. Taslimi, F. Akhundova, M. Kurbanova, F. Türkan, B. Tuzun, A. Sujayev et al., Biological activity and molecular docking study of some bicyclic structures: antidiabetic and anticholinergic potentials. Polycyclic Aromat. Compd. 42(9), 6003–6016 (2022)

    Article  CAS  Google Scholar 

  18. P. Taslimi, F. Türkan, D. Güngördü Solğun, A. Aras, Y. Erden, H.U. Celebioglu et al., Metal contained Phthalocyanines with 3, 4-Dimethoxyphenethoxy substituents: their anticancer, antibacterial activities and their inhibitory effects on some metabolic enzymes with molecular docking studies. J. Biomol. Struct. Dyn. 40(7), 2991–3002 (2022)

    Article  CAS  PubMed  Google Scholar 

  19. P. Taslimi, İ Gulçin, Antidiabetic potential: in vitro inhibition effects of some natural phenolic compounds on α-glycosidase and α-amylase enzymes. J. Biochem. Mol. Toxicol. 31(10), e21956 (2017)

    Article  Google Scholar 

  20. P. Taslimi, H. Akıncıoğlu, İ Gulçin, Synephrine and phenylephrine act as α-amylase, α-glycosidase, acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase enzymes inhibitors. J. Biochem. Mol. Toxicol. 31(11), e21973 (2017)

    Article  Google Scholar 

  21. A. Huseynova, R. Kaya, P. Taslimi, V. Farzaliyev, Kh. Mammadyarova, A. Sujayev, B. Tüzün, U. Kocyigit, S. Alwasel, İ Gulçin, Design, synthesis, characterization, biological evaluation, and molecular docking studies of novel 1,2-aminopropanthiols substituted derivatives as selective carbonic anhydrase, acetylcholinesterase and α-glycosidase enzymes inhibitors. J. Biomol. Struct. Dyn. 40(1), 236–248 (2022)

    Article  CAS  PubMed  Google Scholar 

  22. A. Sujayev, P. Taslimi, B. Safarov, L. Aliyeva, V. Farzaliyev, R. Kaya, İ Gulçin, Synthesis, characterization and biological evaluation of N-substituted triazinane-2-thiones and theoretical–experimental mechanism of condensation reaction. Appl. Organometallic Chem. 34(2), e5329 (2020)

    Article  CAS  Google Scholar 

  23. G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A.J. Olson, AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 30(16), 2785–2791 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. B. K. Shoichet, I. D. Kuntz, Bodenhausen, G., Ernst, R. R. Prediction of binding constants for protein-ligand complexes. J. Mol. Biol. 221(2), 327–346 (1991)

  25. O. Trott, A.J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31(2), 455–461 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Y. Tao, Y. Zhang, Y. Cheng, Y. Wang, Rapid screening and identification of α-glucosidase inhibitors from mulberry leaves using enzyme-immobilized magnetic beads coupled with HPLC/MS and NMR. Biomed. Chromatogr. 27, 148–155 (2013)

    Article  CAS  PubMed  Google Scholar 

  27. P. Taslimi, C. Caglayan, İ Gulçin, The impact of some natural phenolic compounds on carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase, and α-glycosidase enzymes: an antidiabetic, anticholinergic, and antiepileptic study. J. Biochem. Mol. Toxicol. 31(12), e21995 (2017)

    Article  Google Scholar 

  28. F. Turkan, A. Cetin, P. Taslimi, İ Gulçin, Some pyrazoles derivatives: potent carbonic anhydrase, α-glycosidase and cholinesterase enzymes inhibitors. Arch. Pharm. 351(10), 1800200 (2018)

    Article  Google Scholar 

  29. Z. Xiao, R. Storms, A. Tsang, A quantitative starch-iodine method for measuring alpha-amylase and glucoamylase activities. Anal. Biochem. 351, 146–148 (2006)

    Article  CAS  PubMed  Google Scholar 

  30. Y. Demir, L. Durmaz, P. Taslimi, İ Gülçin, Anti-diabetic properties of dietary phenolic compounds: inhibition effects on α-amylase, aldose reductase and α-glycosidase. Biotechnol. Appl. Biochem. 66(5), 781–786 (2019)

    Article  CAS  PubMed  Google Scholar 

  31. İ Gulçin, P. Taslimi, A. Aygün, N. Sadeghian, E. Bastem, O.I. Kufrevioglu, F. Turkan, F. Şen, Antidiabetic and antiparasitic potentials: Inhibition effects of some natural antioxidant compounds on α-glycosidase, α-amylase and human glutathione S-transferase enzymes. Int. J. Biol. Macromol. 119, 741–746 (2018)

    Article  PubMed  Google Scholar 

  32. P. Taslimi, H.E. Aslan, Y. Demir, N. Oztaskin, A. Maraş, İ Gulçin, S. Beydemir, S. Goksu, Diarilmethanon, bromophenols and diarilmetan compounds: discovery of potent aldose reductase, α-amylase and α-glycosidase inhibitors as new therapeutic approach in diabetes and functional hyperglycemia. Int. J. Biol. Macromol. 119, 857–863 (2018)

    Article  CAS  PubMed  Google Scholar 

  33. A. Akıncıoğlu, S. Göksu, A. Naderi, H. Akıncıoğlu, N. Kılınç, İ Gülçin, Cholinesterases, carbonic anhydrase inhibitory properties and in silico studies of novel substituted benzylamines derived from dihydrochalcones. Comput. Biol. Chem. 94, 107565 (2021)

    Article  PubMed  Google Scholar 

  34. Schrödinger, Schrödinger Release 2020–3: Maestro, LLC, New York, NY, (2020)

  35. G.M. Sastry, M. Adzhigirey, T. Day, R. Annabhimoju, W. Sherman, Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des. 27(3), 221–234 (2013)

    Article  ADS  PubMed  Google Scholar 

  36. W. Sherman, T. Day, M.P. Jacobson, R.A. Friesner, R. Farid, Novel procedure for modeling ligand/receptor induced fit effects. J. Med. Chem. 49(2), 534–553 (2006)

    Article  CAS  PubMed  Google Scholar 

  37. M. Sandor, R. Kiss, G. Keserű, Virtual fragment docking by Glide: a validation study on 190 protein−fragment complexes. J. Chem. Inf. Model. 50(6), 1165–1172 (2010)

    Article  CAS  PubMed  Google Scholar 

  38. S. Genheden, U. Ryde, The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov. 10(5), 449–461 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. N. Gök, A. Akıncıoğlu, E. Erümit Binici, H. Akıncıoğlu, N. Kılınç, S. Göksu, Synthesis of novel sulfonamides with anti‐Alzheimer and antioxidant capacities. Arch. Pharm. 354(7),e2000496 (2021)

    Google Scholar 

  40. F. Balestri, R. Moschini, U. Mura, M. Cappiello, A. Del Corso, In search of differential inhibitors of aldose reductase. Biomolecules 12(4), 485 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. C.C. Zhao, X.H. Zhang, J. Chen, J.H. Shao, Z.Y. Zhao, Y.Y. Tang, Lignans with α-glucosidase, protein tyrosine phosphatase 1B, and aldose reductase inhibitory activities from the fruits of Viburnum cylindricum. Ind. Crops Prod. 178, 114601 (2022)

    Article  CAS  Google Scholar 

  42. E. Bursal, A. Aras, Ö. Kılıç, P. Taslimi, A.C. Gören, İ Gulçin, Phytochemical content, antioxidant activity and enzyme inhibition effect of Salvia eriophora Boiss. & Kotschy against acetylcholinesterase, α-amylase, butyrylcholinesterase and α-glycosidase enzymes. J. Food Biochem. 43(3), e12776 (2019)

    Article  PubMed  Google Scholar 

  43. H. Shehryar, Kh.M. Khan, P. Taslimi, U. Salar, T. Taskin-Tok, D. Kisa, F. Saleem, M. Solangi, M.H. Ahmed, K. Rani, Evaluation of synthetic 2-aryl quinoxaline derivatives as α-amylase, α-glucosidase, acetylcholinesterase, and butyrylcholinesterase inhibitors. Int. J. Biol. Macromol. 211, 653–668 (2022)

    Article  Google Scholar 

  44. N. Lolak, S. Akocak, C. Türkeş, P. Taslimi, M. Işık, Ş Beydemir, İ Gülçin, M. Durgun, Synthesis, characterization, inhibition effects, and molecular docking studies as acetylcholinesterase, α-glycosidase, and carbonic anhydrase inhibitors of novel benzenesulfonamides incorporating 1,3,5-triazine structural motifs. Bioorg. Chem. 100, 103897 (2020)

    Article  CAS  PubMed  Google Scholar 

  45. Y. Demir, P. Taslimi, Ü.M. Koçyiğit, M. Akkuş, M.S. Özaslan, H.E. Duran, Y. Budak, B. Tüzün, M.B. Gürdere, M. Ceylan, S. Taysi, İ Gülçin, Ş Beydemir, Determination of the inhibition profiles of pyrazolyl–thiazole derivatives against aldose reductase and α-glycosidase and molecular docking studies. Arch. Pharm. 353(12), 2000118 (2020)

    Article  CAS  Google Scholar 

  46. İ Gulcin, O.V. Petrova, P. Taslimi, S.F. Malysheva, EYu. Schmidt, L.N. Sobenina, N.K. Gusarova, B.A. Trofimov, B. Tuzun, V.M. Farzaliyev, S. Alwasel, A.R. Sujayev, Synthesis, characterization, molecular docking, acetylcholinesterase and α-glycosidase inhibition profiles of nitrogen-based novel heterocyclic compounds. ChemistrySelect 7(19), e202200370 (2022)

    Article  CAS  Google Scholar 

  47. P. Taslimi, A. Sujayev, M. Karaman, G. Maharramova, N. Sadeghian, S. Osmanova, S. Sardarova, N. Majdi, H.U. Ozel, İ Gulcin, N-Substituted pyrimidinethione and acetophenone derivatives as a new therapeutic approach in diabetes. Arch. Pharm. 353(7), 1–25 (2020)

    Google Scholar 

  48. A. Maharramov, M. Kurbanova, P. Taslimi, Y. Demir, A. Safarova, E. Huseyinov, A. Sujayev, S.H. Alwasel, İ Gulcin, Synthesis, characterization, crystal structure and bioactivities of novel enamine and pyrrole derivatives endowed with acetylcholinesterase, α-glycosidase and human carbonic anhydrase inhibition effects. Organic Commun. 14(2), 144–156 (2021)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out with the financial support of the Science Development Fund under the President of the Republic of Azerbaijan—Grant NoEIF-ETL-2020-2(36)-16/11/4-m-11. Saleh H. Alwasel would like to extend his sincere appreciation to the Researchers Supporting Project (RSP-2024/59), King Saud University, Saudi Arabia, for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parham Taslimi.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sujayev, A., Sadeghian, N., Taslimi, P. et al. Functionally substituted derivatives of novel thiourea and phenylthiourea as potent aldose reductase, α-amylase, and α-glycosidase inhibitors: in vitro and in silico studies. Macromol. Res. (2024). https://doi.org/10.1007/s13233-024-00247-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13233-024-00247-9

Keywords

Navigation