Skip to main content
Log in

Simulation of Non-Isothermal Non-Newtonian Flow Behavior of PP for Various Injection Molding Screws and Comparison with Experimental Results

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Reducing injection molding cycle time is very important for improving productivity. In the cooling phase of injection molding, resin plasticization must be completed in the screw. This study examined the plasticization and flow behavior of polypropylene in injection molding screws using non-isothermal simulation. A standard screw and two types of barrier screws, the open-type, in which the barrier flight is open, and the closed-type, in which it is closed, were used. The geometry used in this simulation was wound using a channel model for a full three-dimensional flow simulation. Through non-isothermal simulation, the pressure distribution, melt flow, and temperature distribution were compared in terms of screw design. The experimental study revealed that in the open-type of the barrier screw, the solid bed and melt pool were well separated by the barrier flight, allowing for better melting than in the standard screw and the closed-type barrier screw. Simulation verified that resin melted better in the open-type barrier screw due to its easy inflow in the barrier flight and high temperature generation in the screw channel. The simulation results proved that the study of simulated flow and plasticization of resin in a screw is very useful for estimating screw performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. A. Osswald, L. S. Turng, and P. J. Gramann, Injection Molding Handbook, Hanser Verlag, 2008.

    Google Scholar 

  2. H. Y. Kim and M. Y. Lyu, Polym. Sci. Technol., 20, 157 (2009).

    CAS  Google Scholar 

  3. L. Xie, B. Jiang and L. Shen, Computational Fluid Dynamics Technologies and Applications, InTech, 2011.

    Google Scholar 

  4. M. Khan, S. K. Afaq, N. U. Khan, and S. Ahmad, ISRN Mech. Eng., 2014, (2014).

  5. M. Vishnuvarthanan, R. Panda, and S. Ilangovan, Middle-East J. Sci. Res., 13, 944 (2013).

    Google Scholar 

  6. B. H. Maddock, SPE Jl, 15 383 (1959).

    Google Scholar 

  7. Z. Tadmor, Polym. Eng. Sci., 6, 185 (1966).

    Article  CAS  Google Scholar 

  8. Z. Tadmor, I. Duvdevani, and I. Klein, Polym. Eng. Sci., 7, 198 (1967).

    Article  Google Scholar 

  9. G. Menges and P. Klenk, Kunststoffe, 57, 598 (1967).

    CAS  Google Scholar 

  10. J. Dekker, Kunststoffe, 66, 130 (1976).

    CAS  Google Scholar 

  11. J. T. Lindt, Polym. Eng. Sci., 16, 284 (1976).

    Article  CAS  Google Scholar 

  12. E. M. Mount, III and C. I. Chung, Polym. Eng. Sci., 18, 711 (1978).

    Article  CAS  Google Scholar 

  13. M. R. Thompson, G. Donoian, and J. P. Christiano, Polym. Eng. Sci., 40, 2014 (2000).

    Article  CAS  Google Scholar 

  14. K. J. Wilczyński, A. Nastaj, A. Lewandowski, and K. Wilczyński, Polym. Eng. Sci., 54, 2362 (2014).

    Article  CAS  Google Scholar 

  15. C. Rauwendaal, Polymer Extrusion, Hanser Verlag, 2014.

    Book  Google Scholar 

  16. G. J. Morton-Jones, Polymer Processing, Springer, 1989.

    Book  Google Scholar 

  17. S. L. Rosen, Fundamental Principles of Polymeric Materials, Wiley, 1993.

    Google Scholar 

  18. C. E. Maillefer, US Patent 3358327 (1967).

    Google Scholar 

  19. M. Eshima, US Patent 5141326 (1992).

    Google Scholar 

  20. A. L. Kelly, E. C. Brown, and P. D. Coates, Polym. Eng. Sci., 46, 1706 (2006).

    Article  CAS  Google Scholar 

  21. R. C. Donovan, Polym. Eng. Sci., 14, 101 (1974).

    Article  CAS  Google Scholar 

  22. C. Rauwendaal, Int. Polym. Proc., 17, 26 (1992).

    Article  Google Scholar 

  23. R. Steller and J. Iwko, Int. Polym. Proc., 23, 252 (2008).

    Article  CAS  Google Scholar 

  24. M.-Y. Lyu and J. L. White, Int. Polym. Proc., 10, 305 (1995).

    Article  CAS  Google Scholar 

  25. S.-Y. Park, G.-H Rhee, Y.-H. Nam, and M.-Y. Lyu, Polym. Korea, 40, 414 (2016).

    Article  CAS  Google Scholar 

  26. S.-Y. Park, H.-S. Cho, G.-H. Rhee, Y.-H. Nam, and M.-Y. Lyu, Polym. Korea, 40, 751 (2016).

    Article  CAS  Google Scholar 

  27. R. M. Griffith, Industrial and Engineering Chemistry Fundamentals, 1, 180 (1962).

    Article  CAS  Google Scholar 

  28. C. I. Chung, Polym. Eng. Sci., 11, 93 (1971).

    Article  CAS  Google Scholar 

  29. Z. Tadmor, E. Broyer, and C. Gutfinger, Polym. Eng. Sci., 14, 660 (1974).

    Article  CAS  Google Scholar 

  30. C. D. Han, K. Y. Lee, and N. C. Wheeler, Polym. Eng. Sci., 31, 818 (1991).

    Article  CAS  Google Scholar 

  31. M. Y. Lyu and J. L. White, Int. Polym. Proc., 12, 104 (1997).

    Article  CAS  Google Scholar 

  32. M. Y. Lyu and J. L. White, J. Reinf. Plast. Compos., 16, 1445 (1997).

    Article  CAS  Google Scholar 

  33. M. V. Karwe and Y. Jaluria, Numer. Heat Transfer, 17, 167 (1990).

    Article  Google Scholar 

  34. S. Syrjala, Numer. Heat Transfer: Part A: Applications, 35, 25 (1999).

    Article  CAS  Google Scholar 

  35. A. Inoue, K. Morita, T. Tanaka, Y. Arao, and Y. Sawada, J. Compos. Mater., 49, 75 (2015).

    Article  Google Scholar 

  36. S. D. Lipshitz, R. Lavie, and Z. Tadmor, Polym. Eng. Sci., 14, 553 (1974).

    Article  CAS  Google Scholar 

  37. K. L. Yung, Y. Xu, and K. H. Lau, J. Mater. Process. Technol., 139, 170 (2003).

    Article  Google Scholar 

  38. K. L. Yung and Y. Xu, J. Mater. Process. Technol., 117, 21 (2001).

    Article  Google Scholar 

  39. C. Fernandes, A. J. Pontes, J. C. Viana, J. M. Nobrega, and A. Gaspar-Cunha, Int. Polym. Proc., 29, 1 (2014).

    Article  CAS  Google Scholar 

  40. R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids: Vol. 1, Wiley, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Young Lyu.

Additional information

Acknowledgment: This work was supported by the Industrial Fundamental Technology Development Program funded by the Ministry of Trade, Industry and Energy (MOTIE) of Korea (10051680, Development of high strength and environmental friendly polymer for 3D printing).

The image from this article is used as the cover image of the Volume 26, Issue 8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, SY., Lyu, MY. Simulation of Non-Isothermal Non-Newtonian Flow Behavior of PP for Various Injection Molding Screws and Comparison with Experimental Results. Macromol. Res. 26, 744–754 (2018). https://doi.org/10.1007/s13233-018-6093-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-018-6093-1

Keywords

Navigation