Skip to main content
Log in

Enhancement of self-healing property by introducing ethylene glycol group into thermally reversible Diels-Alder reaction based self-healable materials

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Herein, the effect of chain mobility on the efficiency of self-healing was investigated based on thermally reversible Diels-Alder reaction. Ethylene glycol group was chosen as the functional group for increasing chain mobility of the furan functionalized polymethacrylate and bismaleimide, respectively. From the thermal analysis of the films prepared with various combinations between furan functionalized polymethacrylates and bismaleimide, it was found that glass transition temperature of films decreased with increasing the content of ethylene glycol group. Comparing the state of film before and after the self-healing process by optical microscope images, it was also confirmed that the film prepared with polymer and bismaleimide having high ratio of ethylene glycol group (FEEMA55 and bismaleimide-1) has high self-healing efficiency. Therefore, the improving mobility by the introduction of ethylene glycol group plays an important role for the enhancement of self-healing property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. R. White, N. R. Sottos, P. H. Geubelle, J. S. Moore, M. R. Kessler, S. R. Siriam, E. N. Brown, and S. Viswanathan, Nature, 409, 794 (2001).

    Article  CAS  Google Scholar 

  2. M. W. Keller, S. R. White, and N. R. Sottos, Adv. Funct. Mater., 17, 2399 (2007).

    Article  CAS  Google Scholar 

  3. K. S. Toohey, C. J. Hansen, J. A. Lewis, S. R. White, and N. R. Sottos, Adv. Funct. Mater., 19, 1399 (2009).

    Article  CAS  Google Scholar 

  4. S. H. Cho, S. R. White, and P. V. Braun, Adv. Mater., 21, 645 (2009).

    Article  CAS  Google Scholar 

  5. Y. Yang and M. W. Urban, Chem. Soc. Rev., 42, 7446 (2013).

    Article  CAS  Google Scholar 

  6. C. M. Chung, Y. S. Roh, S. Y. Cho, and J. G. Kim, Chem. Mater., 16, 3982 (2004).

    Article  CAS  Google Scholar 

  7. S. Banerjee, R. Tripathy, D. Cozzens, T. Nagy, S. Keki, M. Zsuga, and R. Faust, ACS Appl. Mater. Interfaces, 7, 2064 (2015).

    Article  CAS  Google Scholar 

  8. J. A. Yoon, J. Kamada, K. Koynov, J. Mohin, R. Nicolay, Y. Shang, A. C. Calazs, T. Kowalewski, and K. Matyjaszewski, Macromolecules, 45, 142 (2012).

    Article  CAS  Google Scholar 

  9. N. Kuhl, R. Geitner, R. K. Bose, S. Bode, B. Dietzek, M. Schmitt, J. Popp, S. J. Garcia, S. van der Zwaag, U. S. Schubert, and M. D. Hager, Macromol. Chem. Phys., 217, 2541 (2016).

    Article  CAS  Google Scholar 

  10. H. Zhou, G. Xu, J. Li, S. Zeng, X. Zhang, Z. Zheng, X. Ding, W. Chen, Q. Wang, and W. Jhang, Macromol. Res., 23, 1098 (2015).

    Article  CAS  Google Scholar 

  11. X. Chen, M. A. Dam, K. Ono, A. Mal, H. Shen, S. R. Nutt, K. Sheran, and F. Wudl, Science, 295, 1698 (2002).

    Article  CAS  Google Scholar 

  12. A. M. Peterson, R. E. Jensen, and G. R. Palmese, Compos. Sci. Technol., 71, 586 (2011).

    Article  CAS  Google Scholar 

  13. J. S. Park, T. Darlington, A. F. Starr, K. Takahashi, J. Riendeau, and H. T. Hahn, Compos. Sci. Technol., 70, 2154 (2010).

    Article  CAS  Google Scholar 

  14. P. du, M. Wu, X. Liu, Z. Zheng, X. Wang, T. Joncheray, and Y. Zhang, J. Appl. Polym. Sci., 131, 40234 (2014).

    Google Scholar 

  15. J. Li, G. Zhang, L. Deng, K. Jiang, S. Zhao, Y. Gao, R. Sun, and C. Wong, J. Appl. Polym. Sci., 132, 42167 (2015).

    Google Scholar 

  16. X. Kuang, G. Liu, X. Dong, and D. Wang, Macromol. Mater. Eng., 301, 535 (2016).

    Article  CAS  Google Scholar 

  17. J. Zhao, R. Xu, G. Luo, J. Wu, and H. Xia, J. Mater. Chem. B, 4, 982-989.

  18. V. Froidevaux, M. Borne, E. Laborbe, R. Auvergne, A. Gandini, and B. Boutevin, RSC Adv., 5, 37742 (2015).

    Article  CAS  Google Scholar 

  19. T. Engel and G. Kickelbick, Eur. J. Inorg. Chem., 7, 1226 (2015).

    Article  Google Scholar 

  20. C. P. Vázquez, C. Joly-Duhamel, and B. Boutevin, Macromol. Chem. Phys., 210, 269 (2009).

    Article  Google Scholar 

  21. A. A. Kavitha and N. K. Singha, J. Polym. Sci., Part A: Polym. Chem., 19, 4441 (2007).

    Article  Google Scholar 

  22. H. Weizman, C. Nielsen, O. S. Weizman, and S. Nemat-Nasser, J. Chem. Educ., 88, 1137 (2011).

    Article  CAS  Google Scholar 

  23. G. Postiglione, S. Turri, and M. Levi, Prog. Org. Coat., 78, 526 (2015).

    Article  CAS  Google Scholar 

  24. M. Watanabe and N. Yoshie, Polymer, 47, 4946 (2006).

    Article  CAS  Google Scholar 

  25. W. J. Choi, J. S. Chung, J. J. Kim, S. K. Kim, S. H. Cha, M. Park, and J. C. Lee, J. Coat. Technol. Res., 11, 455 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Ho Cha.

Additional information

Acknowledgments: This work was supported by Kyonggi University’s Graduate Research Assistantship 2017.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, HY., Cha, SH. Enhancement of self-healing property by introducing ethylene glycol group into thermally reversible Diels-Alder reaction based self-healable materials. Macromol. Res. 25, 640–647 (2017). https://doi.org/10.1007/s13233-017-5120-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-017-5120-y

Keywords

Navigation