Skip to main content
Log in

Biochemical properties of water soluble polysaccharides from photosynthetic marine microalgae Tetraselmis species

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Water soluble polysaccharides (WSPs) were isolated from defatted microalgae Tetraselmis sp. KCTC 12432 BP (T.S1) and KCTC 12236 BP (T.S2), and purified by a combination of ethanol precipitation, immobilized metal affinity chromatography and size-exclusion column chromatography. Biochemical properties of WSPs obtained from the supernatant (S 1 and S 2) and purification steps (EP 1 and EP 2) have been elucidated for their potential use as a biologically active material. Oxidative effect on efficiency from the hydrolytic fenton reaction (FS 1 and FS 2) was also employed to assess the WSPs production and biological activity from T.S1 and T.S2, respectively. Antioxidant activity of the purified WSPs from EP 2 toward 1,1-diphenyl-2-picryl-hy-drazyl (DPPH), 2,2’-Azinobis (3-ethylbenzothiazoline-6-sulfonic acid) di-ammonium salt (ABTS), and ferric reducing antioxidant power (FRAP) of radical-scavenging showed significant differences depending on the monosaccharide compositions of WSPs. On the other hand, a significant specific tyrosinase inhibitory activity was observed from the WSPs purified from EP 1 (10 ¼mol/g/min) indicating the potential use as a whitening source. The outcomes of our study support the utilization of WSPs from these microalgal species as a potential source of naturally occurring whitening and antioxidants to ease oxidative stresses. According to our knowledge related to microalgal studies, until now this is the first study which demonstrates the significance between primary structure and potential biological activities of WSPs purified from the defatted microalgae Tetraselmis species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Chisti, J. Biotechnol., 167, 201 (2013).

    Article  CAS  Google Scholar 

  2. E. Ryckebosch, K. Muylaert, and I. Foubert, J. Am. Oil Chem. Soc., 89, 189 (2012).

    Article  CAS  Google Scholar 

  3. R. Halim, M. K. Danquah, and P. A. Webley, Biotechnol. Adv., 30, 709 (2012).

    Article  CAS  Google Scholar 

  4. M. J. Scholz, T. L. Weiss, R. E. Jinkerson, J. Jing, R. Roth, U. Goodenough, M. C. Posewits, and H. G. Gerken, Eukaryot. Cell, 13, 1450 (2014).

    Article  Google Scholar 

  5. T. S. Arnarson and R. G. Keil, Geochim. Cosmochim. Acta, 71, 3545 (2007).

    Article  CAS  Google Scholar 

  6. E. Günerken, E. D’Hondt, M. H. M. Eppink, L. Garcia-Gonzalez, K. Elst, and R. H. Wijffels, Biotechnol. Adv., 33, 243 (2015).

    Article  Google Scholar 

  7. P. T. Martone, J. M. Estevez, F. Lu, K. Ruel, M. W. Denny, C. Somerville, and J. Ralph, Curr. Biol., 19, 169 (2009).

    Article  CAS  Google Scholar 

  8. H. Tian. X. Yin, Q. Zeng, L. Zhu, and J. Chen, Int. J. Biol. Macromol., 79, 577 (2015).

    Article  CAS  Google Scholar 

  9. Z. Zhang, Q. Zhang, J. Wang, H. Song, H. Zhang, and X. Niu, Carbohydr. Polym., 79, 290 (2010).

    Article  CAS  Google Scholar 

  10. W. Jing, Z. Quanbin, Z. Zhongshan, and Z. Li, Int. J. Biol. Macromol., 42, 127 (2008).

    Article  Google Scholar 

  11. S. Tanioka, Y. Matsui, T. Irie, T. Tanigawa, Y. Tanaka, H. Shibata, Y. Sawa, and Y. Kono, Biosci. Biotechnol. Biochem., 60, 2001 (1996).

    Article  CAS  Google Scholar 

  12. B. Halliwell and J. M. Gutteridge, Biochem. J., 219, 1 (1984).

    Article  CAS  Google Scholar 

  13. B. G. Goo, B. Gu, D. J. Choi, Y. I. Park, S. Andriy, B. Roman, D. H. Seong, C. G. Lee, and J. K. Park, Bioresour. Technol., 129, 343 (2013).

    Article  CAS  Google Scholar 

  14. D. M. Kato, N. Elia, M. Flythe, and B. C. Lynn, Bioresour. Technol., 162, 273 (2014).

    Article  CAS  Google Scholar 

  15. M. B. Hall, Animal Feed Sci. Technol., 185, 94 (2013).

    Article  CAS  Google Scholar 

  16. T. Yamaguchi, H. Takamura, T. Matoba, and J. Terao, Biosci. Biotechnol. Biochem., 62, 1201 (1998).

    Article  CAS  Google Scholar 

  17. Q. Fan, H. Jiang, E. D. Yuan, J. X. Zhang, Z. X. Ning, S. J. Qi, and Q. Y. Wei, Food Chem., 134, 1081 (2012).

    Article  CAS  Google Scholar 

  18. Y. Y. Chan, K. H. Kim, and S. H. Cheah, J. Ethnopharmacol., 137, 1183 (2011).

    Article  CAS  Google Scholar 

  19. Y. Lu and F. L. Yeap, Food Chem., 75, 197 (2001).

    Article  CAS  Google Scholar 

  20. P. A. Fetsch, A. I. Riker, F. M. Marincola, and A. Abati, Cancer Cytopathol., 90, 252 (2000).

    Article  CAS  Google Scholar 

  21. C. C. Lee, Y. T. Chen, C. C. Chiu, W. T. Liao, Y. C. Liu, and H. M. David Wang, J. Biosci. Bioeng., 119, 464 (2015).

    Article  CAS  Google Scholar 

  22. S. B. Kim, J. E. Kim, O. J. Kang, S. H. Mun, Y. S. Seo, D. H. Kang, D. W. Yang, S. Y. Ryu, Y. M. Lee, and D. Y. Kwon, Int. J. Mol. Med., 35, 1411 (2015).

    CAS  Google Scholar 

  23. S. Shukla, J. Park, D. H. Kim, S. Y. Hong, J. S. Lee, and M. Kim, Food Control, 59, 854 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Kweon Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dogra, B., Amna, S., Park, Y.I. et al. Biochemical properties of water soluble polysaccharides from photosynthetic marine microalgae Tetraselmis species. Macromol. Res. 25, 172–179 (2017). https://doi.org/10.1007/s13233-017-5016-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-017-5016-x

Keywords

Navigation