Skip to main content
Log in

Multiple locus genealogies and phenotypic characters reappraise the causal agents of apple ring rot in China

  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

Apple ring rot inflicts severe economic losses in the main apple producing areas of East Asia. The causal agent of the disease has been variously identified as Macrophoma kuwatsukai, Physalospora piricola and Botryosphaeria berengeriana f. sp. piricola, although B. dothidea is currently the most widely accepted pathogen name. The taxonomic uncertainty has delayed research that is needed to manage effectively this destructive disease. In the present study, genealogical concordance phylogenetic species recognition (GCPSR) was applied to pathogenic fungal isolates from apple and pear from several locations in China, along with several reference isolates. Phylogenetic results based on sequences of four nuclear loci (ITS, EF-1α, HIS and HSP) revealed the existence of two species within the examined isolates. One includes an ex-epitype isolate of B. dothidea and the other includes an isolate that was previously designated as B. berengeriana f. sp. piricola. Morphologically, the latter taxon presented an appressed mycelial mat on PDA whereas B. dothidea displayed columns of aerial mycelia reaching the lids, and conidia of the latter species were longer than B. dothidea. Botryosphaeria dothidea had a faster growth rate than the latter taxon under relatively high temperatures. Pathogenicity tests showed that on pear stems the latter taxon caused large-scale cankers along with blisters whereas B. dothidea was non-pathogenic, but on apple shoots the two fungi induced large and small wart-like prominences, respectively. Overall, this cryptic species demonstrated sufficient genetic variations and biological differences from B. dothidea. As a result of taxonomic study, we described here the latter taxon in a new combination, Botryosphaeria kuwatsukai and designate an epitype. Both B. kuwatsukai and B. dothidea are considered to be the main causal agents for apple ring rot in China and Japan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Altekar G, Dwarkadas S, Huelsenbeck JP, Ronquist F (2004) Parallel metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics 20:407–415

    Article  CAS  PubMed  Google Scholar 

  • Chen C (1999) Advances in the research of apple ring rot. Acta Phytopathol Sinica 29(3):1–7 (in Chinese)

    Google Scholar 

  • Cunningham CW (1997) Can three incongruence tests predict when data should be combined? Mol Biol Evol 14:733–740

    Article  CAS  PubMed  Google Scholar 

  • De Wet J, Burgess T, Slippers B, Preisig O, Wingfield BD, Wingfield MJ (2003) Multiple gene genealogies and microsatellite markers reflect relationships between morphotypes of Sphaeropsis sapinea and distinguish a new species of Diplodia. Mycol Res 107:557–566

    Article  PubMed  Google Scholar 

  • Farris JS, Källersjö M, Kluge AG, Bult C (1994) Testing significance of incongruence. Cladistics 10:315–319

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hara K (1930) Pathologia Agriculturalis Plantarum. Yokendo, Tokyo, pp 481–483 (in Japanese)

    Google Scholar 

  • Huang C, Liu K (2001) RAPD analysis of the pathogenic fungi of apple ring rot and other major related diseases. Acta Phytopathol Sinica 31(2):69–74

    Google Scholar 

  • Hyde KD, Chomnunti P, Crous PW, Groenewald JZ, Damm U, Ko TWK, Shivas RG, Summerell BA, Tan YP (2010) A case for re-inventory of Australia’s plant pathogens. Persoonia 25:50–60

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hyde KD, Nilsson RH, Alias SA, Ariyawansa HA, Blair JE, Cai L, de Cock AWAM, Dissanayake AJ, Glockling SL, Goonasekara ID, Gorczak M, Hahn M, Jayawardena RS, van Kan JAL, Laurence MH, Lévesque CA, Li X, Liu JK, Maharachchikumbura SSN, Manamgoda DS, Martin FN, McKenzie EHC, McTaggart AR, Mortimer PE, Nair PVR, Pawłowska J, Rintoul TL, Shivas RG, Spies CFJ, Summerell BA, Taylor PWJ, Terhem RB, Udayanga D, Vaghefi N, Walther G, Wilk M, Wrzosek M, Xu JC, Yan JY, Zhou N (2014) One stop shop: backbones trees for important phytopathogenic genera: I. Fungal Divers 67:21–125. doi:10.1007/s13225-014-0298-1

  • Inderbitzin P, Bostock RM, Trouillas FP, Michailides TJ (2010) A six locus phylogeny reveals high species diversity in Botryosphaeriaceae from California almond. Mycologia 102:1350–1368

    Article  CAS  PubMed  Google Scholar 

  • Jones AL, Aldwinckle HS (1990) Compendium of apple and pear diseases. American Phytopathological Society, St. Paul, Minnesota, USA

    Google Scholar 

  • Kang L, Hao H, Yang Z, Li X, Kang G (2009) The advances in the research of apple ring rot. Chin Agric Sci Bull 25(09):188–191 (in Chinese)

    Google Scholar 

  • Koganezawa H, Sakuma T (1980) Fungi associated with blister canker and internal bark necrosis of apple trees. Bull Fruit Tree Res Station C (Morioka) 7:83–99

    Google Scholar 

  • Koganezawa H, Sakuma T (1984) Causal fungi of apple fruit rot. Bull Fruit Tree Res Station C (Morioka) 11:49–62

    Google Scholar 

  • Kuwatsuka K (1921) J Okitsu Hortic Soc (Engei no Kenkyu) 17:190–195, in Japanese

    Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Huang L, Suolang L, Gao X, Chen Y, Kang Z (2011) A rapid laboratory evaluation system for apple ring rot. Acta Phytophylacica Sinica 38(1):37–41 (in Chinese)

    Google Scholar 

  • Liu JK, Phookamsak R, Doilom M, Wikee S, Li YM, Ariyawansa H, Boonmee S, Chomnunti P, Dai DQ, Bhat JD, Romero AI, Zhuang WY, Monkai J, Jones EBG, Chukeatirote E, Ko Ko TW, Zhao YC, Wang Y, Hyde KD (2012) Towards a natural classification of Botryosphaeriales. Fungal Divers 57:149–210

    Article  Google Scholar 

  • Lv D, Zhang J, Zhang Z, Zhou Z, Chen X, Du X, Qu S (2012) The relationship between rDNA-ITS sequences and biological characteristics of the apple ring rot pathogen Botryosphaeria berengeriana de Not f. sp. piricola (Nose). Fungal Genom Biol 2:104

    Google Scholar 

  • Maharachchikumbura SSN, Guo LD, Cai L, Chukeatirote E, Wu WP, Sun X, Crous PW, Bhat DJ, McKenzie EHC, Bahkali AH, Hyde KD (2012) A multi-locus backbone tree for Pestalotiopsis, with a polyphasic characterization of 14 new species. Fungal Divers 56:95–129

    Article  Google Scholar 

  • Marques MW, Lima NB, de Morais MA, Michereff SJ, Phillips AJL, Câmara MPS (2013) Botryosphaeria, Neofusicoccum, Neoscytalidium and Pseudofusicoccum species associated with mango in Brazil. Fungal Divers 61:195–208

    Article  Google Scholar 

  • Miura M (1917) Ringo no Byoki. Shokabo, Tokyo, pp 106–109 (in Japanese)

    Google Scholar 

  • Morgado LN, Noordeloos ME, Lamoureux Y, Geml J (2013) Multi-gene phylogenetic analyses reveal species limits, phylogeographic patterns, and evolutionary histories of key morphological traits in Entoloma (Agaricales, Basidiomycota). Persoonia 31:159–178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Muggia L, Prerez-Ortega S, Fryday A, Spribille T, Grube M (2014) Global assessment of genetic variation and phenotypic plasticity in the lichen-forming species Tephromela atra. Fungal Divers 64:233–251

    Article  Google Scholar 

  • Nose T (1933) On the ring rot of pears and the causal organism, especially on its perfect generation Physalospora piricola. Ann Agric Exp Sta Chosen 7(2):156–163 (in Japanese)

    Google Scholar 

  • Nylander JAA (2004) MrModeltest v2. Program Distributed by the Author. Uppsala University, Evolutionary Biology Centre

    Google Scholar 

  • Ogata T, Sano T, Harada Y (2000) Botryosphaeria spp. isolated from apple and several deciduous fruit trees are divided into three groups based on the production of warts on twigs, size of conidia, and nucleotide sequences of nuclear ribosomal DNA ITS regions. Mycoscience 41:331–337

    Article  CAS  Google Scholar 

  • Park EW (2005) An infection model of apple white rot based on conidial germination and appressorium formation of Botryosphaeria dothidea. Plant Pathol J 21:322–327

    Article  Google Scholar 

  • Pavlic D, Slippers B, Coutinho TA, Wingfield MJ (2009) Multiple gene genealogies and phenotypic data reveal cryptic species of the Botryosphaeriaceae: a case study on the Neofusicoccum parvum/N. ribis complex. Mol Phylogenet Evol 51:259–268

    Article  CAS  PubMed  Google Scholar 

  • Peng B, Liu L, Wu H, Tian L, Zhou Z, Gu Q (2011) The intraspecific genetic diversity of pathogenic fungi of apple ring rot. Sci Agric Sin 44(6):1125–1135 (in Chinese)

    CAS  Google Scholar 

  • Phillips AJL, Alves A, Abdollahzadeh J, Slippers B, Wingfield MJ, Groenewald JZ, Crous PW (2013) The Botryosphaeriaceae: genera and species known from culture. Stud Mycol 76:51–167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pringle A, Baker DM, Platt JL, Wares JP, Latge JP, Taylor JW (2005) Cryptic speciation in the cosmopolitan and clonal human pathogenic fungus Aspergillus fumigatus. Evolution 59:1886–1899

    Article  CAS  PubMed  Google Scholar 

  • Qu J, Li X, Zhang Y, Fan K (2007) Evaluation of fungitoxicity of tebuconazole against Alternaria mali and Physalospora piricola on apple in laboratory and in field. Chin J Pestic Sci 9(2):149–152 (in Chinese)

    CAS  Google Scholar 

  • Slippers B, Crous PW, Denman S, Coutinho TA, Wingfield BD, Wingfield MJ (2004a) Combined multiple gene genealogies and phenotypic characters differentiate several species previously identified as Botryosphaeria dothidea. Mycologia 96:83–101

    Article  CAS  PubMed  Google Scholar 

  • Slippers B, Fourie G, Crous PW, Coutinho TA, Wingfield BD, Carnegie AJ, Wingfield MJ (2004b) Speciation and distribution of Botryosphaeria spp. on native and introduced Eucalyptus trees in Australia and South Africa. Stud Mycol 50:343–358

    Google Scholar 

  • Slippers B, Fourie G, Crous PW, Coutinho TA, Wingfield BD, Wingfield MJ (2004c) Multiple gene sequences delimit Botryosphaeria australis sp. nov. from B. lutea. Mycologia 96:1030–1041

    Article  CAS  PubMed  Google Scholar 

  • Smith H, Crous PW, Wingfield MJ, Coutinho TA, Wingfield BD (2001) Botryosphaeria eucalyptorum sp. nov., a new species in the B. dothidea-complex on Eucalyptus in South Africa. Mycologia 93:277–285

    Article  Google Scholar 

  • Swofford DL (2003) PAUP*. Phylogenetic analysis using parsimony (* and other methods). Version 4. Sinauer Associates, Sunderland, Massachusetts

  • Tang W, Ding Z, Zhou Z, Wang Y, Guo L (2012) Phylogenetic and pathogenic analyses show that the causal agent of apple ring rot in China is Botryosphaeria dothidea. Plant Dis 96:486–496

    Article  Google Scholar 

  • Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31:21–32

    Article  CAS  PubMed  Google Scholar 

  • Udayanga D, Liu X, Crous PW, McKenzie EHC, Chukeatirote E, Hyde KD (2012) A multi-locus phylogenetic evaluation of Diaporthe (Phomopsis). Fungal Divers 56:157–171

    Article  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc: Guide Methods Appl 18:315–322

    Article  Google Scholar 

  • Xu C, Wang C, Sun X, Zhang R, Gleason ML, Eiji T, Sun G (2013) Multiple group I introns in the small-subunit rDNA of Botryosphaeria dothidea: implication for intraspecific genetic diversity. PLoS One 8:e67808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamamoto W (1961) Species of the genera of Glomerella and Guignardia with special reference to their imperfect stages. Sci Rep Hyogo Univ Agric 5(1):1–12 (in Japanese)

    Google Scholar 

  • Zhang G, Li B, Dong X, Wang C, Li G, Guo L (2011) Microanatomy conformation of apple branch tumors caused by Botryosphaeria dothidea. Acta Phytopathol Sinica 41(1):98–101 (in Chinese)

    Google Scholar 

  • Zhou Z, Hou H, Wang L, Zhu F (2010) Trunk apple ring rot artificial inoculation method and the identification of cultivar resistance. J Fruit Sci 27(6):952–955 (in Chinese)

    Google Scholar 

Download references

Acknowledgments

We are grateful for help in sample collecting by Prof. Zengqiang Zhou (Zhengzhou Institute of Pomology, Henan, China) and Prof. Meng Zhang (Henan Agricultural University, Henan, China). We thank Prof Pedro W. Crous (CBS-KNAW Fungal Biodiversity Centre, The Netherlands.) and Dr Eric H.C. McKenzie (Landcare Research, Auckland, New Zealand) for exchanging the authentic cultures and giving suggestion in nomenclature. This work was supported by National Natural Science Foundation of China (31371887, 31171797), the 111 Project from Education Ministry of China (B07049), Specialized Research Fund for the Doctoral Program of Higher Education (20130204110002) and China Agriculture Research System (CARS-28).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bingzhi Li or Guangyu Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Wang, C., Ju, L. et al. Multiple locus genealogies and phenotypic characters reappraise the causal agents of apple ring rot in China. Fungal Diversity 71, 215–231 (2015). https://doi.org/10.1007/s13225-014-0306-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-014-0306-5

Key words

Navigation