Skip to main content

Advertisement

Log in

Xerotolerant foliar endophytic fungi of Populus euphratica from the Tarim River basin, Central China are conspecific to endophytic ITS phylotypes of Populus tremula from temperate Europe

  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

Fungal research on non-lichenized taxa in xeric and other unusual habitats for fungi is comparatively scarce but constantly reveal an enormous ecological and functional adaptiveness of these organisms to extremes. This holds true in the topmost forest canopies as well as in marine, arctic, antarctic or desert habitats. In the present study dried leaves of Populus euphratica from a continental desert area in Central China were investigated for endophytic fungi 6 weeks after sampling by cultivation of small leaf fragments. Thirty-five species, many of them well-known from extreme environments, were delimitated from as few as 58 isolates by a combined analysis of morphotypes, micromorphology and ITS sequences. Meta-analyses revealed pronounced conspecificity to endophytes from Populus tremula leaves, but significant differences to foliar endophytic assemblages in Pinus monticola and Fagus sylvatica. The deduced high similarity of endophytic communities on both Populus species compared with that on Pinus and Fagus suggests that many fungal phyllosphere species show a well-pronounced host preference, at least for their endophytic stages. In addition, it demonstrates that leaving leaves as a microhabitat might provide similar conditions such as constantly high relative humidity, regardless of the surrounding climatic conditions. The evolution of extremotolerance might be of particular importance for retaining competitiveness of foliar endophytes in deciduous host trees after loss of pathogenicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abarenkov K, Nilsson RH, Larsson K-H et al (2010) The UNITE database for molecular identification of fungi–recent updates and future perspectives. New Phytol 186:281–285

    Article  PubMed  Google Scholar 

  • Albrectsen BR, Björkén L, Varad A et al (2010) Endophytic fungi in European aspen (Populus tremula), detection, and a suggested correlation of herbivory resistance. Fungal Divers 41:17–28

    Article  Google Scholar 

  • Bayman P (2006) Diversity, scale and variation of endophytic fungi in leaves of tropical plants. In: Bailey MJ, Lilley AK, Timms-Wilson TM, Spencer-Phillips PTN (eds) Microbial ecology of aerial plant surfaces. CABI International, Cambridge, pp 37–50

    Chapter  Google Scholar 

  • Bensch K, Groenewald JZ, Dijksterhuis J, et al. (2010) Species and ecological diversity within the Cladosporium cladosporioides complex (Davidiellaceae, Capnodiales). Stud Mycol 1–94

  • Bewley JD (1979) Physiological aspects of desiccation tolerance. Ann Rev Plant Physiol 30:195–238

    Article  CAS  Google Scholar 

  • Bills GF (1996) Isolation and analysis of endophytic fungal communities from woody plants. In: Redlin SC, Carris LM (eds) Endophytic fungi in grasses and woody plants, systematics, ecology and evolution. American Phytopathological Society Press, St. Paul, pp 31–65

    Google Scholar 

  • Bitzer J, Thomas L, Fournier J et al (2008) Affinities of Phylaciaand the daldinoid Xylariaceae, inferred from chemotypes of cultures and ribosomal DNA sequences. Mycol Res 112:251–270

    Article  PubMed  CAS  Google Scholar 

  • Botella L, Julio Javier D (2011) Phylogenic diversity of fungal endophytes in Spanish stands of Pinus halepensis. Fungal Divers 47:9–18

    Article  Google Scholar 

  • Browicz K (1977) Chorology of Populus euphratica Olivier. Arboretum Kórnickie 22:5–27

    Google Scholar 

  • Butin H (1992) Effect of endophytic fungi from oak (Quercus robur L.) on the mortality of leaf inhabiting gall insects. J Forest Pathol 22:237–246

    Article  Google Scholar 

  • Camara MPS, Palm ME, van Berkum P, O'Neill NR (2002) Molecular phylogeny of Leptosphaeria and Phaeosphaeria. Mycologia 94:630–640

    Article  PubMed  CAS  Google Scholar 

  • Carroll G (1988) Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69:2–9

    Article  Google Scholar 

  • Carroll G (1995) Forest endophytes–patterns and process. Can J Bot 73(suppl 1 E–H):S1316–S1324

    Article  Google Scholar 

  • Crous PW, Summerell BA, Shivas RG et al (2011) Fungal Planet description sheets: 92–106. Persoonia 27:130–162

    Article  PubMed  CAS  Google Scholar 

  • de Hoog S, Zalar P, van den Ende BG, Gunde-Cimerman N (2005) Relation of halotolerance to human-pathogenicity in the fungal tree of life: an overview of ecology and evolution under stress. In: Gunde-Cimerman N, Oren A, Plemenitas A (eds) Adaptation to life at high salt concentrations in Archaea, Bacteria and Eukarya, 1–25

  • Fisher PJ, Sutton BC, Petrini LE, Petrini O (1994) Fungal endophytes from Opuntia stricta: a first report. Nova Hedw 59:195–200

    Google Scholar 

  • Freeman S, Rodriguez RJ (1993) Genetic conversion of a fungal plant pathogen to a nonpathogenic, endophytic mutualist. Science 260:75–78

    Article  PubMed  CAS  Google Scholar 

  • Fröhlich-Nowoisky J, Pickersgill DA, Després VR, Pöschl U (2009) Diversity of fungi in air particulate matter. PNAS 106:12814–12819

    Article  PubMed  Google Scholar 

  • Gange AC (1996) Positive effects of endophyte infection on sycamore aphids. Oikos 75:500–510

    Article  Google Scholar 

  • Ganley RJ, Newcombe G (2006) Fungal endophytes in seeds and needles of Pinus monticola. Mycol Res 110:318–327

    Article  PubMed  Google Scholar 

  • Gilbert GS, Reynolds DR, Bethancourt A (2007) The patchiness of epifoliar fungi in tropical forests: host range, host abundance, and environment. Ecology 88:575–581

    Article  PubMed  Google Scholar 

  • Gock MA, Hocking AD, Pitt JI, Poulos PG (2003) Influence of temperature, water activity and pH on growth of some xerophilic fungi. J Food Microbiol 2481:11–19

    Article  Google Scholar 

  • González V, Tello ML (2011) The endophytic mycota associated with Vitis vinifera in central Spain. Fungal Divers 47:29–42

    Article  Google Scholar 

  • Gostincar C, Grube M, de Hoog S, Zalar P, Gunde-Cimerman N (2010) Extremotolerance in fungi: evolution on the edge. FEMS Microbiol Ecol 71:2–11

    Article  PubMed  CAS  Google Scholar 

  • Gries D, Foetzki A, Arndt SK et al (2005) Production of perennial vegetation in an oasis-desert transition zone in NW China–allometric estimation and assessment of flooding and use effects. Plant Ecol 181:23–43

    Article  Google Scholar 

  • Hartmann M, Lee S, Hallam SJ, Mohn WW (2009) Bacterial, archaeal and eukaryal community structures throughout soil horizons of harvested and naturally disturbed forest stands. Environ Microbiol 11:3045–3062

    Article  PubMed  Google Scholar 

  • Higgins KL, Arnold AE, Miadlikowska J, Sarvate SD, Lutzoni F (2007) Phylogenetic relationships, host affinity, and geographic structure of boreal and arctic endophytes from three major plant lineages. Mol Phylogenet Evol 42:543–555

    Article  PubMed  CAS  Google Scholar 

  • Hoffman MT, Arnold AE (2010) Diverse bacteria inhabit living hyphae of phylogenetically diverse fungal endophytes. Appl Environ Microbiol 76:4063–4075

    Article  PubMed  CAS  Google Scholar 

  • Houbraken J, Frisvad JC, Samson RA (2011) Taxonomy of Penicillium section Citrina. Stud Mycol 70:53–137

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist RR (2001) MrBayes: Bayesian inference of phylogeny. 17: 754–755

  • Huhndorf SM, Glawe DA (1990) Pycnidial development from ascospores of Fenestella princeps. 82: 541–548

  • Hyde KD, Soytong K (2008) The fungal endophyte dilemma. Fungal Divers 33:163–173

    Google Scholar 

  • Jumpponen A, Jones KL (2009) Massively parallel 454 sequencing indicates hyperdiverse fungal communities in temperate Quercus macrocarpa. New Phytol 184:438–448

    Article  PubMed  CAS  Google Scholar 

  • Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Ainsworth & Brisby’s dictionary of the fungi. CABI Publishing, UK

    Google Scholar 

  • Ko Ko T, Stephenson SL, Bahkali AH, Hyde KD (2011) From morphology to molecular biology: can we use sequence data to identify fungal endophytes? Fungal Divers 50:113–120

    Article  Google Scholar 

  • Kumar S, Filipski A (2007) Sequence alignment: in pursuit of homologous DNA positions. Genome Res 17:127–135

    Article  PubMed  CAS  Google Scholar 

  • Li H-Y, Shen M, Zhou Z-P et al (2012) Diversity and cold adaptation of endophytic fungi from five dominant plant species collected from the Baima Snow Mountain, Southwest China. Fungal Divers. doi:10.1007/s13225-012-0153-1

  • Liu MG (1997) Zhongguo ziran dili tuce (Atlas of nature and geography of China; in Chinese). Zhongguo Tuce Chubanshe (China Cartographic Press), Beijing

    Google Scholar 

  • Lodge DJ, Fisher PJ, Sutton BC (1996) Endophytic fungi of Manilkara bidentata in Puerto Rico. Mycologia 88:733–738

    Article  Google Scholar 

  • Maddison WP, Maddison DR (2011) Mesquite: a modular system for evolutionary analysis. Version 2.75 http://mesquiteproject.org, assessed 20/02/2012

  • Martinez-Culebras PV, Abad-Campos P, Garcia-Jimenez J (2004) Molecular characterization and PCR detection of the melon pathogen Acremonium cucurbitacearum. Eur J Plant Pathol 110:801–809

    Article  CAS  Google Scholar 

  • Mayr S, Hacke U, Schmid P, et al. (2006) Frost drought in conifers at the alpine timberline: xylem dysfunction and adaptations. 87: 3175–3185

  • McCune B, Mefford MJ (2006) PC-ORD. Multivariate analysis of ecological data. Version 5. MjM Software, Gleneden Beach, Oregon, U.S.A. MjM Software, Gleneden Beach, Oregon, U.S.A.

  • Menkis A, Allmer J, Vasiliauskas R, Lygis V, Stenlid J, Finlay R (2004) Ecology and molecular characterization of dark septate fungi from roots, living stems, coarse and fine woody debris. Mycol Res 108:965–973

    Article  PubMed  CAS  Google Scholar 

  • Nagy LG, Hazi J, Vagvoelgyi C, Papp T (2012) Phylogeny and species delimitation in the genus Coprinelluswith special emphasis on the haired species. Mycologia 104:254–275

    Article  PubMed  Google Scholar 

  • Nilsson RH, Veldre V, Hartmann M et al (2010) An open source software package for automated extraction of ITS1 and ITS2 from fungal ITS sequences for use in high-throughput community assays and molecular ecology. Fungal Ecol 3:284–287

    Article  Google Scholar 

  • Nylander JAA (2004) MrModeltest [computer program]. Version 2.1. Uppsala: Evolutionary Biology Centre, Uppsala University, by the author

  • Onofri S, Selbmann L, Zucconi L, Pagano S (2004) Antarctic microfungi as models for exobiology. Planet Space Sci 52:229–237

    Article  Google Scholar 

  • Ottow EA, Polle A, Brosché M, et al. (2005) Molecular characterization of PeNhaD1: the first member of the NhaD Na+/H+ antiporter family of plant origin. Plant Mol Biol: 73–86

  • Paulus B, Gadek P, Hyde KD (2003) Estimation of microfungal diversity in tropical rainforest leaf litter using particle filtration: the effects of leaf storage and surface treatment. Mycol Res 107:748–756

    Article  PubMed  Google Scholar 

  • Peterson SW (2011) Phylogeny and nomenclature of the genus Talaromyces and taxa accommodated in Penicillium subgenus Biverticillium. Stud Mycol 70:159–183

    Article  PubMed  Google Scholar 

  • Petrini O (1991) Fungal endophytes of tree leaves. In: Andrews JH, Hirano SS (eds) Microbiology of the phyllosphere. Cambridge University Press, Cambridge, pp 175–187

    Google Scholar 

  • Petrini O, Sieber TN, Toti L, Viret O (1992) Ecology, metabolite production, and substrate utilization in endophytic fungi. Nat Toxins 1:185–196

    Article  PubMed  CAS  Google Scholar 

  • Pirttilä AM, Frank AC (2011) Endophytes of forest trees–biology and applications. Forestry Sciences 80. Springer, Berlin

    Google Scholar 

  • Pitt JI (1975) Xerophilic fungi and the spoilage of foods of plant origin. In: Duckworth RB (ed) Water relations of foods. Academic, London, pp 273–307

    Google Scholar 

  • Polizzotto R, Andersen B, Martini M, Grisan S, Assante G, Musetti R (2012) A polyphasic approach for the characterization of endophytic Alternaria strains isolated from grapevines. J Microbiol Methods 88:162–171

    Article  PubMed  Google Scholar 

  • Promputtha I, Hyde KD, McKenzie EHC, Pederby JF, Lumyong S (2010) Can leaf degrading enzymes provide evidence endophytic fungi becoming saprobes? Fungal Divers 41:89–99

    Article  Google Scholar 

  • Rocha ACS, Garcia D, Uetanabaro APT et al (2011) Foliar endophytic fungi from Hevea brasiliensis and their antagonism on Microcyclus ulei. Fungal Divers 47:75–84

    Article  Google Scholar 

  • Rodrigues A, Mueller UG, Ishak HD, Bacci M Jr, Pagnocca FC (2011) Ecology of microfungal communities in gardens of fungus-growing ants (Hymenoptera: Formicidae): a year-long survey of three species of attine ants in Central Texas. FEMS Microbiol Ecol 78:244–255

    Article  PubMed  CAS  Google Scholar 

  • Rodriquez RJ, White JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  Google Scholar 

  • Saikkonen K, Faith SH, Helander M, Sullivan TJ (1998) Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Syst 29:319–343

    Article  Google Scholar 

  • Santamaría J, Bayman P (2005) Fungal epiphytes and endophytes of coffee leaves (Coffea arabica). Ecol 50:1–8

    Google Scholar 

  • Schnittler M, Eusemann P (2010) Consequences of genotyping errors for estimation clonality: a case study on Populus euphratica (Salicaceae). Evol Ecol 24:1417–1432

    Article  Google Scholar 

  • Schubert K, Groenewald JZ, Braun U et al (2007) Biodiversity in the Cladosporium herbarum complex (Davidiellaceae, Capnodiales), with standardisation of methods for Cladosporium taxonomy and diagnostics. Stud Mycol 58:105–156

    Article  PubMed  CAS  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686

    Article  PubMed  Google Scholar 

  • Scott JA, Wong B, Summerbell RC, Untereiner WA (2008) A survey of Penicillium brevicompactum and P. Bialowiezense from indoor environments, with commentary on the taxonomy of the P. Brevicompactum group. Botany 86:732–741

    Article  CAS  Google Scholar 

  • Selbmann L, de Hoog GS, Mazzaglia A, Friedmann EI, Onofri S (2005) Fungi at the edge of life: cryptoendolithic black fungi from Antarctic desert. Stud Mycol 51:1–32

    Google Scholar 

  • Sherwood MA (1981) Convergent evolution in discomycetes from bark and wood. Bot J Linn Soc 82:15–34

    Article  Google Scholar 

  • Spatafora JW, Sung GH, Hywel-Jones NL, White JF (2007) Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes. Mol Ecol 16:1701–1711

    Article  PubMed  CAS  Google Scholar 

  • Stone JK, Sherwood MA, Carroll GC (1996) Canopy microfungi: function and diversity. Northwest Science Spec (70): 37–45

  • Strobel GA (2003) Endophytes as sources of bioactive products. Microbes Inf 5:534–544

    Google Scholar 

  • Sun Y, Wang Q, Lu X, Okane I, Kakishima M (2011) Endophytic fungal community in stems and leaves of plants from desert areas in China. Mycol Progr. doi:10.1007/s11557-011-0790-x

  • Suryanarayanan TS (2011) Diversity of fungal endophytes in tropical trees. In: Pirttilä AM, Frank AC (eds) Endophytes of forest trees–biology and applications. Forestry Sciences 80. Springer, Berlin, pp 67–80

    Google Scholar 

  • Suryanarayanan TS, Wittlinger SK, Faeth SH (2005) Endophytic fungi with cacti in Arizona. Mycol Res 109:635–639

    Article  PubMed  Google Scholar 

  • Thevs N, Zerbe S, Schnittler M, Abdusalih N, Succow M (2008) Structure, reproduction, and flood-induced dynamics of riparian Tugai forests at the Tarim River in Xinjiang, NW China. Forestry 45–57

  • Thomas FM, Foetzki A, Arndt SK et al (2006) Water use by perennial plants in the transition zone between river oasis and desert in NW China. Basic Appl Ecol 7:253–267

    Article  Google Scholar 

  • Tian YZ (1991) Tokai on the delta at the lower reach of Keriya River—a natural vegetation complex reflecting ecological degradation. In: Jäkel D (ed) Reports on the “1986 Sino-German Kunlun-shan expedition”, für Erdkunde zu Berlin, Berlin, pp. 99–112

  • Todd D (1988) The effects of host genotype, growth-rate, and needle age on the distribution of a mutualistic, endophytic fungus in Douglas-fir plantations. Can J Forest Res 18:601–605

    Article  Google Scholar 

  • Unterseher M, Schnittler M (2009) Dilution-to-extinction cultivation of leaf-inhabiting fungi in beech (Fagus sylvatica.)–different techniques influence fungal biodiversity. Mycol Res 113:645–654

    Article  PubMed  Google Scholar 

  • Unterseher M, Schnittler M (2010) Species richness analysis and ITS rDNA phylogeny revealed majority of cultivable foliar endophytes from beech (Fagus sylvatica). Fungal Ecol 3:366–378

    Article  Google Scholar 

  • Unterseher M, Tal O (2006) Influence of small scale conditions on the diversity of wood decay fungi in a temperate, mixed deciduous forest canopy. Mycol Res 110:169–178

    Article  PubMed  Google Scholar 

  • Vega FE, Goettel MS, Blackwell M et al (2009) Fungal entomopathogens: new insights on their ecology. Fungal Ecol 2:149–159

    Article  Google Scholar 

  • Wang S, Chen B, Li H (1996) Euphrates poplar forest. China Environmental Science Press, Beijing

    Google Scholar 

  • Weber RWS, Anke H (2006) Effects of endophytes on colonisation by leaf surface microbiota. In: Bailey MJ, Lilley AK, Timms-Wilson TM, Spencer-Phillips PTN (eds) Microbial ecology of aerial plant surfaces. CABI International, Cambridge, pp 209–222

    Chapter  Google Scholar 

  • Weiß M, Sykorova Z, Garnica S et al (2011) Sebacinales everywhere: previously overlooked ubiquituous fungal endophytes. PLoS One 6:e16793

    Article  PubMed  Google Scholar 

  • Wiehle M, Eusemann P, Thevs N, Schnittler M (2009) Root suckering patterns in Populus euphratica (Euphrates poplar, Salicaceae). Trees 23:991–1001

    Article  Google Scholar 

  • Wilson D (1995) Endophyte—the evolution of a term, and clarification of its use and definition. Oikos 73:274–276

    Article  Google Scholar 

  • Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank their University and the “Akademisches Auslandsamt Greifswald” for funding within the “Forschungsnetzwerk Ostseeraum 2011”. MU thanks Urmas Kõljalg, Leho Tedersoo and Kessy Abarenkov for introduction into UNITE and PlutoF, AP and MS thank the German Science Foundation (DFG) for funding (DFG SCHN 1080/1-1 and SCHN 1080/3-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Unterseher.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Species list of leaf-inhabiting fungal endophytes of Populus euphratica and their GenBank accession numbers. The best fully annotated sequences from BLAST are displayed; literature comments are provided to trace the reliability of BLAST searches. (XLS 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Unterseher, M., Petzold, A. & Schnittler, M. Xerotolerant foliar endophytic fungi of Populus euphratica from the Tarim River basin, Central China are conspecific to endophytic ITS phylotypes of Populus tremula from temperate Europe. Fungal Diversity 54, 133–142 (2012). https://doi.org/10.1007/s13225-012-0167-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-012-0167-8

Keywords

Navigation