Skip to main content
Log in

Transcriptomic and metabolomics analyses reveal metabolic characteristics of L-leucine- and L-valine-producing Corynebacterium glutamicum mutants

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Industrial amino acid production strains of Corynebacterium glutamicum are usually obtained by mutagenesis. However, the genetic and metabolic characteristics and the efficient synthesis mechanism of the selected mutants are unclear. The aims of this study were (1) to determine the gene transcriptional patterns and intracellular metabolite levels of an L-leucine-producing mutant C. glutamicum CP and an L-valine-producing mutant C. glutamicum XV referring to wild type, and (2) to understand the efficient synthesis mechanism of target product of these mutants. For this purpose, transcriptomic and metabolomics analyses were combined to investigate the association between intracellular patterns and product synthesis. The high intracellular level of glucose and the low intracellular level of metabolites in the central carbon metabolism meant the glucose metabolism rate of two mutants was lower than wild type. However, the increased intracellular pentose level and gene transcription in the pentose phosphate pathway (PPP) indicated that the PPP of mutants was more active. Furthermore, the mutants showed higher intracellular level of NADPH, which was mainly generated in PPP. In the specific pathway for the synthesis of L-leucine and L-valine, the transcriptional level of most genes was upregulated in the mutants. However, the transcription of transaminase C coding gene Cgl2844 was downregulated in CP but upregulated in XV. The upregulation of Cgl2844 might benefit to the synthesis of L-valine and cause the significant decrease of intracellular level of L-alanine and L-glutamate of XV. These characteristics of the mutants provided insight into changes that could be made to systematically optimize the metabolic pathways for the production of L-leucine and L-valine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Anders S (2010) Analysing RNA-Seq data with the DESeq package. Mol Biol 43(4):1–17

    Google Scholar 

  • Anders S, Pyl PT, Huber W (2015) HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics 31(2):166–169

    Article  CAS  PubMed  Google Scholar 

  • Bartek T, Makus P, Klein B, Lang S, Oldiges M (2008) Influence of L-isoleucine and pantothenate auxotrophy for L-valine formation in Corynebacterium glutamicum revisited by metabolome analyses. Bioprocess Biosyst Eng 31:217–225

    Article  CAS  PubMed  Google Scholar 

  • Becker J, Zelder O, Häfner S, Schröder H, Wittmann C (2011) From zero to hero--design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab Eng 13:159–168

    Article  CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple hypothesis testing. J R Stat Soc B 57:289–300

    Google Scholar 

  • Blombach B, Schreiner ME, Bartek T, Oldiges M, Eikmanns BJ (2008) Corynebacterium glutamicum tailored for high-yield L-valine production. Appl Microbiol Biotechnol 79:471–479

    Article  CAS  PubMed  Google Scholar 

  • Bommareddy RR, Chen Z, Rappert S, Zeng AP (2014) A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase. Metab Eng 25:30–37

    Article  CAS  PubMed  Google Scholar 

  • Bott M (2007) Offering surprises: TCA cycle regulation in Corynebacterium glutamicum. Trends Microbiol 15(9):417–425

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Pan J, Yang X, Guo C, Ding W, Si M, Zhang Y, Shen X, Wang Y (2016) Global transcriptomic analysis of the response of Corynebacterium glutamicum to vanillin. PLoS One 11:e0164955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaigalat L, Schlüter JP, Hartmann M, Mormann S, Tauch A, Pühler A, Kalinowski J (2007) The DeoR-type transcriptional regulator SugR acts as a repressor for genes encoding the phosphoenolpyruvate:sugar phosphotransferase system (PTS) in Corynebacterium glutamicum. BMC Mol Biol 8:104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasegawa S, Suda M, Uematsu K, Natsuma Y, Hiraga K, Jojima T, Inui M, Yukawa H (2013) Engineering of Corynebacterium glutamicum for high-yield L-valine production under oxygen deprivation conditions. Appl Environ Microbiol 79:1250–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Z, Lee DY, Yoon S (2017) Quantitative intracellular flux modeling and applications in biotherapeutic development and production using CHO cell cultures. Biotechnol Bioeng 114:2717–2728

    Article  CAS  PubMed  Google Scholar 

  • Inui M, Suda M, Okino S, Nonaka H, Puskás LG, Vertès AA, Yukawa H (2007) Transcriptional profiling of Corynebacterium glutamicum metabolism during organic acid production under oxygen deprivation conditions. Microbiology 153:2491–2504

    Article  CAS  PubMed  Google Scholar 

  • Krömer JO, Sorgenfrei O, Klopprogge K, Heinzle E, Wittmann C (2004) In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome. J Bacteriol 186:1769–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leuchtenberger W (1996) Amino acids–technical production and use. Biotechnology: Prod Primary Metab 6:465–502 (Second Edition)

    Article  CAS  Google Scholar 

  • Ma Y, Chen Q, Cui Y, Du L, Shi T, Xu Q, Ma Q, Xie X, Chen N (2018) Comparative genomic and genetic functional analysis of industrial L-leucine-and L-valine-producing Corynebacterium glutamicum strains. J Microbiol Biotechnol 28(11):1916–1927

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628

    Article  CAS  PubMed  Google Scholar 

  • Muffler A, Bettermann S, Haushalter M, Hörlein A, Neveling U, Schramm M, Sorgenfrei O (2002) Genome-wide transcription profiling of Corynebacterium glutamicum after heat shock and during growth on acetate and glucose. J Biotechnol 98:255–268

    Article  CAS  PubMed  Google Scholar 

  • Okino S, Inui M, Yukawa H (2005) Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 68:475–480

    Article  CAS  PubMed  Google Scholar 

  • Reimonn TM, Park SY, Agarabi CD, Brorson KA, Yoon S (2016) Effect of amino acid supplementation on titer and glycosylation distribution in hybridoma cell cultures-systems biology-based interpretation using genome-scale metabolic flux balance model and multivariate data analysis. Biotechnol Prog 32:1163–1173

    Article  CAS  PubMed  Google Scholar 

  • Sedmak JJ, Grossberg SE (1977) A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem 79:544–552

    Article  CAS  PubMed  Google Scholar 

  • Solieri L, Dakal TC, Giudici P (2013) Next-generation sequencing and its potential impact on food microbial genomics. Ann Microbiol 63:21–37

    Article  CAS  Google Scholar 

  • Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25(9):1105–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wieschalka S, Blombach B, Eikmanns BJ (2012) Engineering Corynebacterium glutamicum for the production of pyruvate. Appl Microbiol Biotechnol 94(2):449–459

    Article  CAS  PubMed  Google Scholar 

  • Vogt M, Haas S, Klaffl S, Polen T, Eggeling L, Ooyen JV, Bott M (2014) Pushing product formation to its limit: metabolic engineering of Corynebacterium glutamicum for L-leucine overproduction. Metab Eng 22:40–52

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Yang S (2017) Comparative analysis of Corynebacterium glutamicum genomes: a new perspective for the industrial production of amino acids. BMC Genomics 18(1):940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin L, Hu X, Xu D, Ning J, Chen J, Wang X (2012) Co-expression of feedback-resistant threonine dehydratase and acetohydroxy acid synthase increase L-isoleucine production in Corynebacterium glutamicum. Metab Eng 14:542–550

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Li Y, Wang C, Wang X (2018) Understanding the high l-valine production in Corynebacterium glutamicum VWB-1 using transcriptomics and proteomics. Sci Rep 8(1):3632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (31470211 and 31770053), Natural Science Foundation of Tianjin (17JCQNJC09500), and Tianjin Municipal Science and Technology Commission (17YFZCSY01050).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xixian Xie or Ning Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 2790 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Ma, Q., Cui, Y. et al. Transcriptomic and metabolomics analyses reveal metabolic characteristics of L-leucine- and L-valine-producing Corynebacterium glutamicum mutants. Ann Microbiol 69, 457–468 (2019). https://doi.org/10.1007/s13213-018-1431-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-018-1431-2

Keywords

Navigation