Skip to main content
Log in

Comparative genome analysis of Oceanimonas sp. GK1, a halotolerant bacterium with considerable xenobiotics degradation potentials

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

The growing pollution by xenobiotic compounds generated through both natural and anthropogenic activities has endangered the environment. The advent of the next generation sequencing has provided fast and cost-effective tools to explore genomes to discover novel xenobiotic-degrading genes. A Gram-negative marine halotolerant Oceanimonas sp. GK1 was analyzed for main physiological and genetically important characteristics at the genome scale while being compared with six other phylogenetically-close sequenced genomes. This exploration revealed high potential of Oceanimonas sp. GK1 for biodegradation of xenobiotics compounds such as phenol. More specifically, the isolate utilizes phenol via the ortho-cleavage pathway as a carbon source in the citrate cycle. This was further confirmed by the significant shortage of carbohydrate active enzymes in Oceanimonas sp. GK1 genome, which has forced this bacterium during the course of evolution to change its metabolism and physiology to benefit unusual carbon and energy sources to survive under harsh conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agarry S, Durojaiye A, Solomon B (2008) Microbial degradation of phenols: a review. Int J Environ Pollut 32(1):12–28

    Article  CAS  Google Scholar 

  • Alva VA, Peyton BM (2003) Phenol and catechol biodegradation by the haloalkaliphile Halomonas campisalis: influence of pH and salinity. Environ Sci Technol 37(19):4397–4402

    Article  CAS  PubMed  Google Scholar 

  • Atlas R.M., Philp J. (2005). Bioremediation: Applied microbial solutions for real-world environmental cleanup. ASM, Washington DC

  • Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9(1):75

    Article  PubMed  PubMed Central  Google Scholar 

  • Bastos AER, Moon DH, Rossi A, Trevors JT, Tsai SM (2000) Salt-tolerant phenol-degrading microorganisms isolated from Amazonian soil samples. Arch Microbiol 174(5):346–352

    Article  CAS  PubMed  Google Scholar 

  • Baudry B, Fasano A, Ketley J, Kaper J (1992) Cloning of a gene (zot) encoding a new toxin produced by Vibrio cholerae. Infect Immun 60(2):428–434

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beaz‐Hidalgo R, Figueras M (2013) Aeromonas spp. whole genomes and virulence factors implicated in fish disease. J Fish Dis 36(4):371–388

    Article  PubMed  Google Scholar 

  • Binet R, Létoffé S, Ghigo JM, Delepelaire P, Wandersman C (1997) Protein secretion by Gram-negative bacterial ABC exporters–a review. Gene 192(1):7–11

    Article  CAS  PubMed  Google Scholar 

  • Bingle LE, Bailey CM, Pallen MJ (2008) Type VI secretion: a beginner’s guide. Curr Opin Microbiol 11(1):3–8

    Article  CAS  PubMed  Google Scholar 

  • Blom J, Albaum SP, Doppmeier D, Pühler A, Vorhölter F-J, Zakrzewski M, Goesmann A (2009) EDGAR: a software framework for the comparative analysis of prokaryotic genomes. BMC Bioinform 10(1):154

    Article  Google Scholar 

  • Bonfá MRL, Grossman MJ, Piubeli F, Mellado E, Durrant LR (2013) Phenol degradation by halophilic bacteria isolated from hypersaline environments. Biodegradation 24(5):699–709

    Article  PubMed  Google Scholar 

  • Boyer F, Fichant G, Berthod J, Vandenbrouck Y, Attree I (2009) Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources. BMC Genomics 10(1):104

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown GR, Sutcliffe IC, Cummings SP (2001) Reclassification of [Pseudomonas] doudoroffii (Baumann et al. 1983) into the genus Oceanomonas gen. nov. as Oceanomonas doudoroffii comb. nov., and description of a phenol-degrading bacterium from estuarine water as Oceanomonas baumannii sp. nov. Int J Syst Evol Microbiol 51(1):67–72

    Article  CAS  PubMed  Google Scholar 

  • Burns DL (1999) Biochemistry of type IV secretion. Curr Opin Microbiol 2(1):25–29

    Article  CAS  PubMed  Google Scholar 

  • Büttner D (2012) Protein export according to schedule: architecture, assembly, and regulation of type III secretion systems from plant-and animal-pathogenic bacteria. Microbiol Mol Biol Rev 76(2):262–310

    Article  PubMed  PubMed Central  Google Scholar 

  • Caspi R, Foerster H, Fulcher CA, Kaipa P, Krummenacker M, Latendresse M, Paley S, Rhee SY, Shearer AG, Tissier C (2008) The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res 36(suppl 1):D623–D631

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chamkha M, Mnif S, Sayadi S (2008) Isolation of a thermophilic and halophilic tyrosol‐degrading Geobacillus from a Tunisian high‐temperature oil field. FEMS Microbiol Lett 283(1):23–29

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Yao J, Wang F, Zhou Y, Chen K, Zhuang R, Choi MM, Zaray G (2010) Toxicity of three phenolic compounds and their mixtures on the gram-positive bacteria Bacillus subtilis in the aquatic environment. Sci Total Environ 408(5):1043–1049

    Article  CAS  PubMed  Google Scholar 

  • Cianciotto NP (2005) Type II secretion: a protein secretion system for all seasons. Trends Microbiol 13(12):581–588

    Article  CAS  PubMed  Google Scholar 

  • Collazo CM, Galán JE (1997) The invasion-associated type-III protein secretion system in Salmonella–a review. Gene 192(1):51–59

    Article  CAS  PubMed  Google Scholar 

  • Cornelis GR, Van Gijsegem F (2000) Assembly and function of type III secretory systems. Annu Rev Microbiol 54(1):735–774

    Article  CAS  PubMed  Google Scholar 

  • Coumes-Florens S, Brochier-Armanet C, Guiseppi A, Denizot F, Foglino M (2011) A new highly conserved antibiotic sensing/resistance pathway in firmicutes involves an ABC transporter interplaying with a signal transduction system. PLoS ONE 6(1), e15951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson AL, Chen J (2004) ATP-binding cassette transporters in bacteria. Annu Rev Biochem 73(1):241–268

    Article  CAS  PubMed  Google Scholar 

  • Deane JE, Abrusci P, Johnson S, Lea SM (2010) Timing is everything: the regulation of type III secretion. Cell Mol Life Sci 67(7):1065–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delcher AL, Harmon D, Kasif S, White O, Salzberg SL (1999) Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27(23):4636–4641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubey SK, Dubey J, Mehra S, Tiwari P, Bishwas A (2013) Potential use of cyanobacterial species in bioremediation of industrial effluents. Afr J Biotechnol 10(7):1125–1132

    Google Scholar 

  • Fathepure BZ (2014) Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments. Front Microbiol 5:173

    Article  PubMed  PubMed Central  Google Scholar 

  • Filloux A (2004) The underlying mechanisms of type II protein secretion. Bba-Mol Cell Res 1694(1):163–179

    CAS  Google Scholar 

  • García MT, Mellado E, Ostos JC, Ventosa A (2004) Halomonas organivorans sp. nov., a moderate halophile able to degrade aromatic compounds. Int J Syst Evol Microbiol 54(5):1723–1728

    Article  PubMed  Google Scholar 

  • García MT, Gallego V, Ventosa A, Mellado E (2005a) Thalassobacillus devorans gen. nov., sp. nov., a moderately halophilic, phenol-degrading, Gram-positive bacterium. Int J Syst Evol Microbiol 55(5):1789–1795

    Article  PubMed  Google Scholar 

  • García MT, Ventosa A, Mellado E (2005b) Catabolic versatility of aromatic compound‐degrading halophilic bacteria. FEMS Microbiol Ecol 54(1):97–109

    Article  PubMed  Google Scholar 

  • Glenn A (1976) Production of extracellular proteins by bacteria. Annu Rev Microbiol 30(1):41–62

    Article  CAS  PubMed  Google Scholar 

  • González G, Herrera G, Garcia MT, Peña M (2001) Biodegradation of phenolic industrial wastewater in a fluidized bed bioreactor with immobilized cells of Pseudomonas putida. Bioresour Technol 80:137–142

    Article  PubMed  Google Scholar 

  • Haddadi A, Shavandi M (2013) Biodegradation of phenol in hypersaline conditions by Halomonas sp. strain PH2-2 isolated from saline soil. Int Biodeterior Biodegrad 85:29–34

    Article  CAS  Google Scholar 

  • Hinteregger C, Streichsbier F (1997) Halomonas sp., a moderately halophilic strain, for biotreatment of saline phenolic waste-water. Biotechnol Lett 19(11):1099–1102

    Article  CAS  Google Scholar 

  • Ivanova EP, Onyshchenko OM, Christen R, Zhukova NV, Lysenko AM, Shevchenko LS, Buljan V, Hambly B, Kiprianova EA (2005) Oceanimonas smirnovii sp. nov., a novel organism isolated from the Black Sea. Syst Appl Microbiol 28(2):131–136

    Article  CAS  PubMed  Google Scholar 

  • Johnson JA, Morris J, Kaper J (1993) Gene encoding zonula occludens toxin (zot) does not occur independently from cholera enterotoxin genes (ctx) in Vibrio cholerae. J Clin Microbiol 31(3):732–733

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kahru A, Maloverjan A, Sillak H, Põllumaa L (2002) The toxicity and fate of phenolic pollutants in the contaminated soils associated with the oil-shale industry. Environ Sci Pollut Res Int 9(1):27–33

    Article  Google Scholar 

  • Karp PD, Caspi R (2011) A survey of metabolic databases emphasizing the MetaCyc family. Arch Toxicol 85(9):1015–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korotkov KV, Sandkvist M, Hol WG (2012) The type II secretion system: biogenesis, molecular architecture and mechanism. Nat Rev Microbiol 10(5):336–351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lagesen K, Hallin P, Rødland EA, Stærfeldt H-H, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35(9):3100–3108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Borgne S, Paniagua D, Vazquez-Duhalt R (2008) Biodegradation of organic pollutants by halophilic bacteria and archaea. J Mol Microbiol Biotechnol 15(2–3):74–92

    Article  PubMed  Google Scholar 

  • Lefebvre O, Moletta R (2006) Treatment of organic pollution in industrial saline wastewater: a literature review. Water Res 40(20):3671–3682

    Article  CAS  PubMed  Google Scholar 

  • Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25(5):0955–964

    Article  CAS  Google Scholar 

  • Lukashin AV, Borodovsky M (1998) GeneMark. hmm: new solutions for gene finding. Nucleic Acids Res 26(4):1107–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacIntyre DL, Miyata ST, Kitaoka M, Pukatzki S (2010) The Vibrio cholerae type VI secretion system displays antimicrobial properties. Proc Natl Acad Sciv 107(45):19520–19524

  • McGenity T (2010) Halophilic hydrocarbon degraders. Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 1939–1951

    Book  Google Scholar 

  • Michałowicz J, Duda W (2007) Phenols-sources and toxicity. Pol J Environ Stud 16(3):347–362

    Google Scholar 

  • Nagamani A, Soligalla R, Lowry M (2009) Isolation and characterization of phenol degrading Xanthobacter flavus. Afr J Biotechnol 8(20)

  • Nies DH (2000) Heavy metal-resistant bacteria as extremophiles: molecular physiology and biotechnological use of Ralstonia sp. CH34. Extremophiles 4(2):77–82

    Article  CAS  PubMed  Google Scholar 

  • Ojo OA (2007) Molecular strategies of microbial adaptation to xenobiotics in natural environment. Biotechnol Mol Biol Rev 2(1):001–013

    Google Scholar 

  • Plotnikova E, Yastrebova O, Anan’ina L, Dorofeeva L, Lysanskaya VY, Demakov V (2011) Halotolerant bacteria of the genus Arthrobacter degrading polycyclic aromatic hydrocarbons. Russ J Ecol 42(6):502–509

    Article  CAS  Google Scholar 

  • Pukatzki S, Ma AT, Revel AT, Sturtevant D, Mekalanos JJ (2007) Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci U S A 104(39):15508–15513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pukatzki S, McAuley SB, Miyata ST (2009) The type VI secretion system: translocation of effectors and effector-domains. Curr Opin Microbiol 12(1):11–17

    Article  CAS  PubMed  Google Scholar 

  • Reith ME, Singh RK, Curtis B, Boyd JM, Bouevitch A, Kimball J, Munholland J, Murphy C, Sarty D, Williams J (2008) The genome of Aeromonas salmonicida subsp. salmonicida A449: insights into the evolution of a fish pathogen. BMC Genomics 9(1):427

    Article  PubMed  PubMed Central  Google Scholar 

  • Ren Q, Paulsen IT (2005) Comparative analyses of fundamental differences in membrane transport capabilities in prokaryotes and eukaryotes. PLoS Comput Biol 1(3):e27

    Article  PubMed  PubMed Central  Google Scholar 

  • Ren Q, Chen K, Paulsen IT (2007) TransportDB: a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels. Nucleic Acids Res 35(suppl 1):D274–D279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivera I, Chowdhury M, Sanchez P, Sato M, Huq A, Colwell R, Martins M (1995) Detection of cholera (ctx) and zonula occludens (zot) toxin genes in Vibrio cholerae O1, O139 and non-O1 strains. World J Microb Biotechnol 11(5):572–577

  • Sabzevari AA, Miri G, Hashemi MM (2013) Effect of drought on surface water reduction of Gavkhouni Wetland in Iran. J Basic Appl Sci Res 3(2s):116–119

  • Saha N, Bhunia F, Kaviraj A (1999) Toxicity of phenol to fish and aquatic ecosystems. Bull Environ Contam Toxicol 63(2):195–202

    Article  CAS  PubMed  Google Scholar 

  • Sandkvist M (2001) Type II secretion and pathogenesis. Infect Immun 69(6):3523–3535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74(12):5463–5467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekoai PT, Daramola MO (2015) Biohydrogen production as a potential energy fuel in South Africa. Biofuel Res J 2(2):223–226. doi:10.18331/BRJ2015.2.2.3

  • Seo J-W, Ohnishi Y, Hirata A, Horinouchi S (2002) ATP-binding cassette transport system involved in regulation of morphological differentiation in response to glucose in Streptomyces griseus. J Bacteriol 184(1):91–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siguier P, Pérochon J, Lestrade L, Mahillon J, Chandler M (2006) ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 34(suppl 1):D32–D36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silverman JM, Brunet YR, Cascales E, Mougous JD (2011) Structure and regulation of the type VI secretion system. Annu Rev Microbiol 66:453–472

    Article  Google Scholar 

  • Sinha S, Chattopadhyay P, Pan I, Chatterjee S, Chanda P, Bandyopadhyay D, Das K, Sen SK (2011) Microbial transformation of xenobiotics for environmental bioremediation. Afr J Biotechnol 8(22):6016–6027

  • Tišler T, Zagorc-Končan J (1997) Comparative assessment of toxicity of phenol, formaldehyde, and industrial wastewater to aquatic organisms. Water Air Soil Pollut 97(3–4):315–322

    Google Scholar 

  • Tomii K, Kanehisa M (1998) A comparative analysis of ABC transporters in complete microbial genomes. Genome Res 8(10):1048–1059

    CAS  PubMed  Google Scholar 

  • Tseng T-T, Tyler BM, Setubal JC (2009) Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. BMC Microbiol 9(Suppl 1):S2

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Domselaar GH, Stothard P, Shrivastava S, Cruz JA, Guo A, Dong X, Lu P, Szafron D, Greiner R, Wishart DS (2005) BASys: a web server for automated bacterial genome annotation. Nucleic Acids Res 33(suppl 2):W455–W459

    Article  PubMed  PubMed Central  Google Scholar 

  • Wattam AR, Abraham D, Dalay O, Disz TL, Driscoll T, Gabbard JL, Gillespie JJ, Gough R, Hix D, Kenyon R (2014) PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res 42(D1):D581–D591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woolard C, Irvine R (1995) Treatment of hypersaline wastewater in the sequencing batch reactor. Water Res 29(4):1159–1168

    Article  CAS  Google Scholar 

  • Wooldridge KG, Kizil M, Wells DB, Ala’Aldeen DA (2005) Unusual genetic organization of a functional type I protein secretion system in Neisseria meningitidis. Infect Immun 73(9):5554–5567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeganeh LP, Azarbaijani R, Sarikhan S, Mousavi H, Ramezani M, Amoozegar MA, Fazeli AS, Salekdeh GH (2012) Complete genome sequence of Oceanimonas sp. GK1, a halotolerant bacterium from Gavkhouni Wetland in Iran. J Bacteriol 194(8):2123–2124

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the Iranian Biological Resource Center for financially supporting this study through the grant MO-1388-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghasem Hosseini Salekdeh.

Additional information

Reza Azarbaijani and Laleh Parsa Yeganeh contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azarbaijani, R., Yeganeh, L.P., Blom, J. et al. Comparative genome analysis of Oceanimonas sp. GK1, a halotolerant bacterium with considerable xenobiotics degradation potentials. Ann Microbiol 66, 703–716 (2016). https://doi.org/10.1007/s13213-015-1156-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-015-1156-4

Keywords

Navigation