Skip to main content
Log in

Identification and characterization of the endophytic bacterium Bacillus atrophaeus XW2, antagonistic towards Colletotrichum gloeosporioides

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Bacillus atrophaeus XW2 was isolated from healthy poplar leaves and exhibited a strong inhibitory effect against Colletotrichum gloeosporioides, a predominant fungus causing poplar anthracnose. The culture filtrate and bacterial lysate of XW2 were antagonistic against hyphal growth and spore germination. The average diameter of the inhibition zones of hyphal growth were 22.3 mm for the culture filtrate and 12.1 mm for the bacterial lysate. The average inhibition rates of spore germination after 24 h were 94.6 % for the culture filtrate and 88.8 % for the bacterial lysate. In the presence of both culture extracts, hyphae developed vacuoles and swelling, and abnormalities were observed in 100 % of germinated spores. Lipopeptides isolated from culture filtrate and bacterial lysate had high antifungal activities against C. gloeosporioides. The average diameter of the inhibition zones were 23.2 mm for culture filtrate and 11.8 mm for bacterial lysate. Crude proteins isolated from culture filtrate and bacterial lysate also showed good inhibition qualities. The average diameters for the zones of inhibition were 22.3 mm for culture filtrate and 13.4 mm for bacterial lysate. Volatiles produced by XW2 inhibited hyphal growth of C. gloeosporioides by 60.2 % and were antagonistic against the germination of C. gloeosporioides spores after 3 days. Greenhouse studies revealed that XW2 had a 49.1 % efficacy in controlling poplar anthracnose 12 days after exposure to the pathogen. We consider that Bacillus atrophaeus XW2 is a promising natural biocontrol agent for use against C. gloeosporioides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alfonzo A, Piccolo SL, Conigliaro G, Ventorino V, Burruano S, Moschetti G (2012) Antifungal peptides produced by Bacillus amyloliquefaciens AG1 active against grapevine fungal pathogens. Ann Microbiol 62(4):1593–1599. doi:10.1007/s13213-011-0415-2

    Article  CAS  Google Scholar 

  • Almenar E, Del Valle V, Catala R, Gavara R (2007) Active package for wild strawberry fruit (Fragaria vesca L.). J Agri Food Chem 55(6):2240–2245. doi:10.1021/jf062809m

    Article  CAS  Google Scholar 

  • Arrebola E, Sivakumar D, Korsten L (2010) Effect of volatile compounds produced by Bacillus strains on postharvest decay in citrus. Biol Control 53(1):122–128. doi:10.1016/j.biocontrol.2009.11.010

    Article  CAS  Google Scholar 

  • Baysal Ö, Lai D, Xu HH, Siragusa M, Çalışkan M, Carimi F, Da Silva JAT, Tör M (2013) A proteomic approach provides new insights into the control of soil-borne plant pathogens by Bacillus species. PLoS One 8(1):e53182. doi:10.1371/j.pone.0053182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beck HC, Hansen AM, Lauritsen FR (2003) Novel pyrazine metabolites found in polymyxin biosynthesis by Paenibacillus polymyxa. FEMS Microbiol Lett 220(1):67–73. doi:10.1016/S0378-1097(03)00054-5

    Article  CAS  PubMed  Google Scholar 

  • Chan YK, McCormick WA, Seifert KA (2003) Characterization of an antifungal soil bacterium and its antagonistic activities against Fusarium species. Can J Microbiol 49(4):253–262. doi:10.1139/w03-033

    Article  CAS  PubMed  Google Scholar 

  • Chaurasia B, Pandey A, Palni LMS, Trivedi P, Kumar B, Colvin N (2005) Diffusible and volatile compounds produced by an antagonistic Bacillus subtilis strain cause structural deformations in pathogenic fungi in vitro. Microbiol Res 160(1):75–81. doi:10.1016/j.micres.2004.09.013

    Article  CAS  PubMed  Google Scholar 

  • Cui TB, Chai HY, Jiang LX (2012) Isolation and partial characterization of an antifungal protein produced by Bacillus licheniformis BS-3. Molecules 17(6):7336–7347. doi:10.3390/molecules17067336

    Article  CAS  PubMed  Google Scholar 

  • Dong XZ, Cai MY, Lu YY, Xie JY, Liu XL (2001) Identification methods of common bacteria. In: Dong XZ (ed) Cai MY(eds)Handbook of common bacteria systematic identify. Beijing Science press, Beijing, pp 349–398

    Google Scholar 

  • Ferreira JHS, Matthee FN, Thomas AC (1991) Biological control of Eutypa lata on grapevine by an antagonistic strain of Bacillus subtilis. Phytopathology 81(3):283–287

    Article  Google Scholar 

  • Fu G, Huang S, Ye Y, Wu Y, Cen Z, Lin S (2010) Characterization of a bacterial biocontrol strain B106 and its efficacies on controlling banana leaf spot and post-harvest anthracnose diseases. Biol Control 55(1):1–10. doi:10.1016/j.biocontrol.2010.05.001

    Article  Google Scholar 

  • Furuya S, Mochizuki M, Aoki Y, Kobayashi H, Takayanagi T, Shimizu M, Suzuki S (2011) Isolation and characterization of Bacillus subtilis KS1 for the biocontrol of grapevine fungal diseases. Biocontrol Sci Tech 21(6):705–720. doi:10.1080/09583157.2011.574208

    Article  Google Scholar 

  • Gao SP, Lewis GD, Ashokkumar M, Hemar Y (2014) Inactivation of microorganisms by low-frequency high-power ultrasound: 1 Effect of growth phase and capsule properties of the bacteria. Ultrason Sonochem 21(1):446–453. doi:10.1016/j.ultsonch.2013.06.006

    Article  CAS  PubMed  Google Scholar 

  • Guan S, Sattler I, Lin W, Guo D, Grabley S (2005) P-aminoacetophenonic acids produced by a mangrove endophyte: Streptomyces griseus subsp. J Nat Prod 68(8):1198–1200. doi:10.1021/np0500777

    Article  CAS  PubMed  Google Scholar 

  • He W, Yang W, Shen RX (1991) The preliminary study on anthracnose of Populus × beijingensis. For Pest and Dis 4:7–9

    Google Scholar 

  • He W, Shen RX, Yang W, Wang YY, Tong ZL (1993) Chemical control the anthracnose of Populus × beijingensis. For Pest and Dis 2:15–17

    Google Scholar 

  • Ju R, Zhao Y, Li J, Jiang H, Liu P, Yang T, Bao Z, Zhou B, Zhou X, Liu X (2014) Identification and evaluation of a potential biocontrol agent, Bacillus subtilis, against Fusarium sp. in apple seedlings. Ann Microbiol 64:377–382. doi:10.1007/s13213-013-0672-3

    Article  Google Scholar 

  • Kai M, Effmert U, Berg G, Piechulla B (2007) Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen rhizoctonia solani. Arch Microbiol 187(5):351–360. doi:10.1007/s00203-006-0199-0

    Article  CAS  PubMed  Google Scholar 

  • Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81(6):1001–1012. doi:10.1007/s00253-008-1760-3

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Liang YM, Tian CM (2012) Characterization of the causal agent of poplar anthracnose occurring in the Beijing region. Mycotaxon 120(1): 277–286. doi:10.5248/120.277

  • Li J, Yang Q, Zhao L, Zhang SM, Wang YX, Zhao XY (2009) Purification and characterization of a novel antifungal protein from Bacillus subtilis strain B29. Univ Sci B 10(4):264–272. doi:10.1631/jzus.B0820341

    Article  CAS  Google Scholar 

  • Li BQ, Lu XY, Guo QG, Qian CE, Li SZ, Ma P (2010) Isolation and identification of lipopeptides and volatile compounds produced by Bacillus subtilis strain BAB-1. Sci Agric Sin 43(17):3547–3554

    CAS  Google Scholar 

  • Liu B, Li H, Yao L, Li JX, Chen C (2009) Characteristics and applications of Bacillus subtilis var. niger ATCC9372. Chin J of Disinfection 26(2):236–237

  • Malfanova N, Franzil L, Lugtenberg B, Chebotar V, Ongena M (2012) Cyclic lipopeptide profile of the plant-beneficial endophytic bacterium Bacillus subtilis HC8. Arch Microbiol 194(11):893–899. doi:10.1007/s00203-012-0823-0

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Wade WG (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64(2):795–799

    CAS  PubMed Central  PubMed  Google Scholar 

  • McMullen M, Bergstrom G (1999) Chemical and biological control of Fusarium head blight 1999 projects and progress. In Proceedings of the 1999 National Fusarium Head Blight Forum, Sioux Falls, S.D., 5–7 December 1999, pp 61–63.

  • Naing KW, Anees M, Kim SJ, Nam Y, Kim YC, Kim KY (2014) Characterization of antifungal activity of Paenibacillus ehimensis KWN38 against soilborne phytopathogenic fungi belonging to various taxonomic groups. Ann Microbiol 64:55–63. doi:10.1007/s13213-013-0632-y

    Article  CAS  Google Scholar 

  • Nakamura LK (1989) Taxonomic Relationship of black-pigmented Bacillus subtilis strains and a proposal for Bacillus atrophaeus sp. nov. Int J Syst Bacterio 39(3):295–300. doi:10.1099/00207713-39-3-295

    Article  Google Scholar 

  • Naveena B, Sakthiselvan P, Elaiyaraju P, Partha N (2012) Ultrasound induced production of thrombinase by marine actinomycetes: Kinetic and optimization studies. Biochem Eng J 61:34–42. doi:10.1016/j.bej.2011.12.007

    Article  CAS  Google Scholar 

  • Pinchuk IV, Bressollier P, Sorokulova IB, Verneuil B, Urdaci MC (2002) Amicoumacin antibiotic production and genetic diversity of Bacillus subtilis strains isolated from different habitats. Res Microbiol 153(5):269–276. doi:10.1016/S0923-2508(02)01320-7

    Article  CAS  PubMed  Google Scholar 

  • Rahman MA, Kadir J, Mahmud TMM, Rahman RA, Begum MM (2007) Screening of antagonistic bacteria for biocontrol activities on Colletotrichum gloeosporioides in papaya. Asian J Plant Sci 6(1):12–20

    Article  Google Scholar 

  • Ren M, Zhao L (2010) Isolation and identification of a beta-cypermethrin-degrading and biocontrol endophytic bacteria in leek. Acta Agriculturae Boreali-Occidentalis Sinica 3:014

    Google Scholar 

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278(1):1–9. doi:10.1111/j.1574-6968.2007.00918.x

    Article  CAS  PubMed  Google Scholar 

  • Sneath PHA (1986) Endospore-forming Gram-positive rods and cocci. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2. Williams & Wilkins, Baltimore, pp 1104–1207

    Google Scholar 

  • Steel CC (1996) Catalase activity and sensitivity to the fungicides, iprodione and fludioxonil in Botrytis cinerea. Lett Appl Microbiol 22(5):335–338. doi:10.1111/j.1472-765X.1996.tb01173.x

    Article  CAS  Google Scholar 

  • Stockwell CA, Luz WC, Bergstrom GC (1997) Biocontrol of wheat scab with microbial antagonists. Phytopathology 87:S94

    Google Scholar 

  • Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms⊥. J Nat Prod 67(2):257–268. doi:10.1021/np030397v

    Article  CAS  PubMed  Google Scholar 

  • Sun JB, Peng M, Wang YG, Zhao PJ, Xia QY (2010) Isolation and characterization of antagonistic bacteria against Fusarium wilt and induction of defense related enzymes in banana. Afr J Microbiol Res 5:509–515. doi:10.5897/AJMR10.607

    Google Scholar 

  • Tagg JR, McGiven AR (1971) Assay system for bacteriocins. Appli Microbiol 21(5):943

    CAS  Google Scholar 

  • Todorova S, Kozhuharova L (2010) Characteristics and antimicrobial activity of Bacillus subtilis strains isolated from soil. World J Microbiol Biotechnol 26(7):1207–1216. doi:10.1007/s11274-009-0290-1

    Article  CAS  PubMed  Google Scholar 

  • Wang BB, Yuan J, Zhang J, Shen ZZ, Zhang MX, Li R, Ruan YZ, Shen QR (2013) Effects of novel bio-organic fertilizer produced by Bacillus amyloliquefaciens W19 on antagonism of Fusarium wilt of banana. Biol Fertil Soils 49(4):435–446. doi:10.1007/s00374-012-0739-5

  • Xin HF, Meng YY, Li JH, Mao HX, Zhang X (2013) Bacillus atrophaeus strains colonization in wheat plant and its inhibition efficiency to Fusarium head blight. Chin J of Ecol 32(6):1490–1496

    Google Scholar 

  • Yang CJ, Zhang XG, Shi GY, Zhao HY, Chen L, Tao K, Hou TP (2011) Isolation and identification of endophytic bacterium W4 against tomato Botrytis cinerea and antagonistic activity stability. Afr J Microbiol Res 5(2):131–136. doi:10.5897/AJMR10.81

    Google Scholar 

  • Yao DH, Ji ZX, Wang CJ, Qi GF, Zhang LL, Ma X, Chen SW (2012) Co-producing iturin A and poly-c-glutamicacid from rapeseed meal under solid state fermentation by the newly isolated Bacillus subtilis strain 3–10. World J Microbiol Biotechnol 28:985–991. doi:10.1007/s11274-011-0896-y

    Article  CAS  PubMed  Google Scholar 

  • Yu Q, Liu Z, Lin D, Zhang W, Sun Q, Zhu J, Lin M (2013) Characterization and evaluation of Staphylococcus sp. strain LZ16 for the biological control of rice blast caused by Magnaporthe oryzae. Biol Control 65(3):338–347. doi:10.1016/j.biocontrol.2013.03.016

    Article  CAS  Google Scholar 

  • Yuan J, Raza W, Shen QR, Huang QW (2012) Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. cubense. Appl Environ Microbiol 78(16):5942–5944. doi:10.1128/AEM.01357-12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang XY, Li BQ, Wang YG, Guo QG, Lu XY, Li SZ, Ma P (2013) Lipopeptides, a novel protein, and volatile compounds contribute to the antifungal activity of the biocontrol agent Bacillus atrophaeus CAB-1. Appl Microbiol Biotechnol 97(21):9525–9534. doi:10.1007/s00253-013-5198-x

    Article  CAS  PubMed  Google Scholar 

  • Zhao XY, Zhao XM, Wei YM, Shang QX, Liu ZP (2013) Isolation and identification of a novel antifungal protein from a rhizobacterium Bacillus subtilis strain F3. J Phytopathol 161(1):43–48. doi:10.1111/jph.12015

    Article  CAS  Google Scholar 

  • Zhao X, Han Y, Tan X, Wang J, Zhou ZJ (2014) Optimization of antifungal lipopeptide production from Bacillus sp. BH072 by response surface methodology. J Microbiol 52(4):324–332. doi:10.1007/s12275-014-3354-3

  • Zheng M, Shi JY, Shi J, Wang QG, Li YH (2013) Antimicrobial effects of volatiles produced by two antagonistic Bacillus strains on the anthracnose pathogen in postharvest mangos. Biol Control 65(2):200–206. doi:10.1016/j.cropro.2004.03.014

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by National Forestry Industry Research Special Funds for Public Welfare Projects (201204501-5) to C.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengming Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Wu, Z., Tian, C. et al. Identification and characterization of the endophytic bacterium Bacillus atrophaeus XW2, antagonistic towards Colletotrichum gloeosporioides . Ann Microbiol 65, 1361–1371 (2015). https://doi.org/10.1007/s13213-014-0974-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-014-0974-0

Keywords

Navigation