Skip to main content
Log in

Production of vineomycin A1 and chaetoglobosin A by Streptomyces sp. PAL114

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

An actinobacteria strain PAL114, isolated from a Saharan soil in Algeria, produces bioactive compounds. Morphological and chemical studies indicated that this strain belongs to the genus Streptomyces. Analysis of the 16S rRNA gene sequence showed a similarity level of 99.8 % with S. griseoflavus LMG 19344T, the most closely related species. Two bioactive compounds, named P44 and P40, were extracted by dichloromethane from the cell-free supernatant broth and were purified by HPLC. Minimum inhibitory concentrations (MIC) of the compounds were determined against pathogenic and toxigenic microorganisms, most of which are multiresistant to antibiotics. The P40 fraction showed a strong activity especially against Candida albicans, Bacillus subtilis, and Staphylococcus aureus and has lower MIC values than those of P44 against most microorganisms tested. Chemical structures of compounds were determined based on spectroscopic and spectrometric analyses (UV-visible, mass, 1H, and 13C NMR spectra). The compounds P44 and P40 were identified as vineomycin A1 and chaetoglobosin A, respectively. Vineomycin A1 is known to be produced by some Streptomyces species. However, chaetoglobosin A is known to be produced only by fungi belonging to the genera Chaetomium, Penicillium, and Calonectria. This is the first time that chaetoglobosin A, known for its antimicrobial, anticancer, and cytotoxic effects, is reported in prokaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aouiche A, Bijani C, Zitouni A, Mathieu F, Sabaou N (2014) Antimicrobial activity of saquayamycins produced by Streptomyces sp. PAL114 isolated from a Saharan soil. J Mycol Med 24:17–23

    Article  Google Scholar 

  • Badji B, Zitouni A, Mathieu F, Lebrihi A, Sabaou N (2006) Antimicrobial compounds produced by Actinomadura sp. AC104 isolated from an Algerian Saharan soil. Can J Microbiol 52:373–382

    Article  CAS  PubMed  Google Scholar 

  • Badji B, Mostefaoui A, Sabaou N, Lebrihi A, Mathieu F, Seguin E, Tillequin F (2007) Isolation and partial characterization of antimicrobial compounds from a new strain Nonomuraea sp. NM94. J Ind Microbiol 34:403–412

    Article  CAS  Google Scholar 

  • Becker B, Lechevalier MP, Gordon RE, Lechevalier HA (1964) Rapid differentiation between Nocardia and Streptomyces by paper chromatography of whole-cell hydrolysates. Appl Microbiol 12:421–423

    CAS  PubMed Central  PubMed  Google Scholar 

  • Betina V (1973) Bioautography in paper and thin layer chromatography and its scope in the antibiotic field. J Chromatogr 78:41–51

    Article  CAS  PubMed  Google Scholar 

  • Boubetra D, Sabaou N, Zitouni A, Bijani C, Lebrihi A, Mathieu F (2012) Taxonomy and chemical characterization of new antibiotics produced by Saccharothrix SA198 isolated from a Saharan soil. Microbiol Res 168:223–230

    Article  PubMed  Google Scholar 

  • Butler MS (2004) The role of natural product chemistry in drug discovery. J Nat Prod 67:2141–2215

    Article  CAS  PubMed  Google Scholar 

  • Chen CL (2007) Methodologies for the synthesis of functionalized naphthols and progress toward the total synthesis of vineomycinone B2 methyl ester and actinophyllic acid. Ph.D. dissertation, University of Texas, Austin

  • Cunliffe CJ, Franklin TJ (1986) Inhibition of prolyl 4-hydroxylase by hydroxyanthraquinones. Biochem J 239:311–315

    CAS  PubMed Central  PubMed  Google Scholar 

  • Demain AL (2006) From natural products discovery to commercialization: a success story. J Ind Microbiol Biotechnol 33:486–495

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fisvad JC, Smedsgaard J, Larsen TO, Samson RA (2004) Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud Mycol 49:201–241

    Google Scholar 

  • Fogle MR, Douglas DR, Jumper CA, Straus DC (2008) Growth and mycotoxin production by Chaetomium globosum is favored in a neutral pH. Int J Mol Sci 9:2357–2365

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Holt JG, Kreig NR, Sneath PHA, Staley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams and Wilkins Co., Baltimore

    Google Scholar 

  • Hu Y, Zhang W, Zhang P, Ruan W, Zhu X (2012) Nematicidal activity of chaetoglobosin A poduced by Chaetomium globosum NK102 against Meloidogyne incognita. J Agric Food Chem 61:41–46

    Article  PubMed  Google Scholar 

  • Imamura N, Kakinuma K, Ikekawa N, Tanaka H, Omura S (1982) Biosynthesis of vineomycins A1 and B2. J Antibiot 35:602–608

    Article  CAS  PubMed  Google Scholar 

  • Jose PA, Jebakumar SRD (2013) Non-streptomycete actinomycetes nourish the current microbial antibiotic drug discovery. Front Microbiol. doi:10.3389/fmicb.2013.00240

    Google Scholar 

  • Jose PA, Santhi VS, Jebakumar SRD (2011) Phylogenetic-affiliation, antimicrobial potential and PKS gene sequence analysis of moderately halophilic Streptomyces sp. inhabiting an Indian saltpan. J Basic Microbiol 51:348–356

    Article  PubMed  Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism, vol 3. Academic, New York, pp 21–132

  • June N, Yeon SW, Paek NS, Kim TH, Kim YH, Kim CJ, Kim KW (1998) Isolation and structural determination of anti-Helicobacter pylori compound from fungus 60686. San’oeb misaengmul haghoeji 26:137–142

    Google Scholar 

  • Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH et al (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA Gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  • Lamari L, Zitouni A, Boudjella H, Badji B, Sabaou N, Lebrihi A, Lefebvre G, Seguin E, Tillequin F (2002a) New dithiolopyrrolone antibiotics from Saccharothrix sp. SA 233. I. Taxonomy, fermentation, isolation and biological activities. J Antibiot 55:696–701

    Article  CAS  PubMed  Google Scholar 

  • Lamari L, Zitouni A, Dob T, Sabaou N, Lebrihi A, Germain P, Seguin E, Tillequin F (2002b) New dithiolopyrrolone antibiotics from Saccharothrix sp. SA 233. II. Physicochemical properties and structure elucidation. J Antibiot 55:702–707

    Article  CAS  PubMed  Google Scholar 

  • Larsen TO, Smedsgaard J, Nielsen KF, Hansen ME, Frisvad JC (2005) Phenotypic taxonomy and metabolite profiling in microbial drug discovery. Nat Prod Rep 22:672–693

    Article  CAS  PubMed  Google Scholar 

  • Lechevalier MP, Lechevalier HA (1970) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443

    Article  CAS  Google Scholar 

  • Lechevalier MP, De Bievre C, Lechevalier HA (1977) Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 5:249–260

    Article  CAS  Google Scholar 

  • Liu D, Coloe S, Baird R, Pedersen J (2000) Rapid mini-preparation of fungal DNA for PCR. J Clin Microbiol 38:471

    CAS  PubMed Central  PubMed  Google Scholar 

  • Locci R (1989) Streptomyces and related genera. In: Williams ST, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 4. Williams and Wilkins Co., Baltimore, pp 2451–2492

    Google Scholar 

  • Maskey RP, Helmke E, Laatsch H (2003) Himalomycin A and B: isolation and structure elucidation of new fridamycin type antibiotics from a marine Streptomyces isolate. J Antibiot 56:942–949

    Article  CAS  PubMed  Google Scholar 

  • Merrouche R, Bouras N, Coppel Y, Mathieu F, Monje MC, Sabaou N, Lebrihi A (2010) Dithiolopyrrolone antibiotic formation induced by adding valeric acid to the culture broth of Saccharothrix algeriensis. J Nat Prod 73:1164–1166

    Article  CAS  PubMed  Google Scholar 

  • Minnikin DE, Patel PV, Alshamaony L, Goodfellow M (1977) Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 27:104–117

    Article  CAS  Google Scholar 

  • Ohtsubo K, Saito M, Sekita S, Yoshihira K, Natori S (1978) Acute toxic effects of chaetoglobosin A, a new cytochalasan compound produced by Chaetomium globosum, on mice and rats. Jpn J Exp Med 48:105–110

    CAS  PubMed  Google Scholar 

  • Oki T, Tenmyo O, Tomatsu K, Kamei H (1990) Pradimicins A, B and C: new antifungal antibiotics. II. In vitro and in vivo biological activities. J Antibiot 43:763–770

    Article  CAS  PubMed  Google Scholar 

  • Omura S (2011) Microbial metabolites: 45 years of wandering, wondering and discovering. Tetrahedron 67:6420–6459

    Article  CAS  Google Scholar 

  • Ono H, Harada S, Kishi T (1974) Maridomycin, a new macrolide antibiotic. VII. J Antibiot 27:442–448

    Article  CAS  PubMed  Google Scholar 

  • Rohr J, Thiericke R (1992) Angucycline group antibiotics. Nat Prod Rep 9:103–137

    Article  CAS  PubMed  Google Scholar 

  • Sabaou N, Boudjella H, Bennadji A, Mostefaoui A, Zitouni A, Lamari L, Bennadji H, Lefebvre G, Germain P (1998) Les sols des oasis du Sahara algérien, source d’actinomycètes rares producteurs d’antibiotiques. Sécheresse 9:147–153

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Shinohara C, Chikanishi T, Nakashima S, Hashimoto A, Hamanaka A, Endo A, Hasumi K (2000) Enhancement of fibrinolytic activity of vascular endothelial cells by chaetoglobosin A, crinipellin B, geodin and triticone B. J Antibiot 53:262–268

    Article  CAS  PubMed  Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 13:313–340

    Article  Google Scholar 

  • Solanki R, Khanna M, Lal R (2008) Bioactive compounds from marine actinomycetes. Indian J Microbiol 48:410–431

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Solecka J, Zajko J, Postek M, Rajnisz A (2012) Biologically active secondary metabolites from actinomycetes. Cent Eur J Biol 7:373–390

    CAS  Google Scholar 

  • Takahashi Y, Omura S (2003) Isolation of new actinomycete strains for the screening of new bioactive compounds. J Gen Appl Microbiol 49:141–154

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighing, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Von Wallbrunn C, Luftmann H, Bergander K, Meinhardt F (2001) Phytotoxic chaetoglobosins are produced by the plant pathogen Calonectria morganii (anamorph Cylindrocladium scoparium). J Gen Appl Microbiol 47:33–38

    Article  Google Scholar 

  • Waksman SA (1961) The Actinomycetes. Classification, identification and descriptions of genera and species, vol 2. Williams and Wilkins Co, Baltimore

    Google Scholar 

  • Watve MG, Tickoo R, Jog MM, Bhole BD (2001) How many antibiotics are produced by the genus Streptomyces? Arch Microbiol 176:386–390

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Zhang Y, Qin J, Qu X, Liu J, Li X, Pan H (2013) Antifungal metabolites produced by chaetomium globosum No.04, an endophytic fungus isolated from Ginkgo biloba. Indian J Microbiol 53:175–180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zitouni A, Lamari L, Boudjella H, Badji B, Sabaou N, Gaouar A, Mathieu F, Lebrihi A, Labeda DP (2004a) Saccharothrix algeriensis sp. nov., isolated from Saharan soil. Int J Syst Evol Microbiol 54:1377–1381

    Article  CAS  PubMed  Google Scholar 

  • Zitouni A, Boudjella H, Mathieu F, Sabaou N, Lebrihi A (2004b) Mutactimycin PR, a new anthracycline antibiotic from Saccharothrix sp. SA 103. I. Taxonomy, fermentation, isolation and biological activities. J Antibiot 57:367–372

    Article  CAS  PubMed  Google Scholar 

  • Zitouni A, Boudjella H, Lamari L, Badji B, Mathieu F, Lebrihi A, Sabaou N (2005) Nocardiopsis and Saccharothrix genera in Saharan soils in Algeria: isolation, biological activities and partial characterization of antibiotics. Res Microbiol 156:984–993

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nasserdine Sabaou or Florence Mathieu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aouiche, A., Meklat, A., Bijani, C. et al. Production of vineomycin A1 and chaetoglobosin A by Streptomyces sp. PAL114. Ann Microbiol 65, 1351–1359 (2015). https://doi.org/10.1007/s13213-014-0973-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-014-0973-1

Keywords

Navigation