Skip to main content
Log in

Phenotypic and genotypic antibiotic resistance profiles of Escherichia coli O157 from cattle and slaughterhouse wastewater isolates

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

The aims of this study were to determine the minimal inhibition concentration of 20 different antibiotics on cattle and slaughterhouse wastewater Escherichia coli O157, including both Shiga toxigenic E. coli O157 (STEC O157) and non-Shiga toxigenic strains (non-STEC O157) by the Epsilometer test, and to determine the antibiotic resistance gene profiles of the isolates by PCR. A total of 102 cattle and slaughterhouse wastewater E. coli O157 isolates including 96 E. coli O157:H7+ (81 non-sorbitol fermenting [NSF] STEC O157:H7, 12 NSF non-STEC O157:H7, and three sorbitol fermenting [SF] non-STEC O157:H7) and six non-STEC O157:H7- isolated from 744 cattle and slaughterhouse wastewater samples collected within a 2-year period were assessed. Of 93 NSF E. coli O157:H7 isolates, 19 were resistant to tetracycline and sulfamethoxazole, 14 to trimethoprim, 13 to cefoxitin, 11 to streptomycin, 10 to ampicillin, eight to chloramphenicol, six to cephalothin, four to cefaclor, four to aztreonam, and four to nalidixic acid. In six of the E. coli O157:H7- isolates, tetracycline resistance was detected while five of them were also resistant to ampicillin, sulfamethoxazole, and trimethoprim. In PCR analysis, 26.0 % (25/96) of the NSF E. coli O157:H7+ and all of the E. coli O157:H7- isolates harbored one or more antibiotic resistance genes. While tetA, tetB, tetC, strA, strB, and sulI genes were detected from a number of the isolates, tetD, tetE, tetG, cmlA, floR, sulII, aadA, and ampC genes were not detected in any of the isolates. Results suggest a high antibiotic resistance in E. coli O157:H7+/H7- cattle and wastewater isolates. The majority of our resistant isolates, antibacterial resistance genes did not correlate with observed phenotypic resistance. Other resistance traits and regulatory factors that mediate antibiotic resistance should be included in further antimicrobial resistance investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anon (2002) Gıda değeri olan hayvanlara uygulanması yasak olan maddeler hakkında tebliğ, 19.12.2002/24968. Amended: Regulation on additives for use in animal nutrition (Hayvan beslemede kullanılan yem katkı maddeleri hakkında yönetmelik) 18.07.2013/28711. Republic of Turkey, Ministry of Food, Agriculture and Livestock

  • Anon (2006) Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; sixteenth informational supplement. M100-S16 Vol.26 No.3

  • Ayaz ND, Gencay YE, Erol I (2014) Prevalence and molecular characterization of sorbitol fermenting and non-fermenting Escherichia coli O157:H7+/H7- isolated from cattle at slaughterhouse and slaughterhouse wastewater. Int J Food Microbiol 174:31–38

    Article  CAS  PubMed  Google Scholar 

  • Brinas L, Zarazaga M, Saenz Y, Ruiz-Larrea F, Torres C (2002) β-Lactamases in ampicillin-resistant Escherichia coli isolates from foods, humans, and healthy animals. Antimicrob Agents Chemother 46:3156–3163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • CDC (2012) Centers for Disease Control and Prevention. National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS): Human isolates final report, 2010. Atlanta, Georgia: U.S. Department of Health and Human Services, CDC

  • CDC (2013) Centers for Disease Control and Prevention: Antibiotic Resistance Threats in the United States. http://www.cdc.gov/drugresistance/threat-report-2013/

  • Chopra I, Roberts M (2001) Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65:232–260

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Czekalski N, Berthold T, Caucci S, Egli A, Bürgmann H (2012) Increased levels of multiresistant bacteria and resistance genes after wastewater treatment and their dissemination into Lake Geneva, Switzerland. Front Microbiol 3:1–18

    Article  Google Scholar 

  • Durso LM, Keen JE (2007) Shiga-toxigenic Escherichia coli O157 and non-Shiga-toxigenic E. coli O157 respond differently to culture and isolation from naturally contaminated bovine feces. J Appl Microbiol 103:2457–2464

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Migura L, Sunde M, Karlsmose S, Veldman K, Schroeter A, Guerra B, Granier SA, Perrin-Guyomard A, Gicquel-Bruneau M, Franco A, Englund S, Teale C, Heiska H, Clemente L, Boerlin P, Moreno MA, Daignault D, Mevius D, Hendriksen RS, Aarestrup FM (2012) Establishing streptomycin epidemiological cut-off values for Salmonella and Escherichia coli. Microb Drug Resist 18:88–93

    Article  CAS  PubMed  Google Scholar 

  • Gebreyes WA, Altier C (2002) Molecular characterization of multidrug-resistant Salmonella enterica subsp. enterica serovar Typhimurium isolates from swine. J Clin Microbiol 40:2813–2822

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goncuoglu M, Bilir-Ormanci FS, Ayaz ND, Erol I (2010) Antibiotic resistance of Escherichia coli O157:H7 isolated from cattle and sheep. Ann Microbiol 60:489–494

    Article  CAS  Google Scholar 

  • Guillame G, Verbrugge D, Chasseur-Libotte ML, Moens W, Collard JM (2000) PCR typing of tetracycline resistance determinants (tet A-E) in Salmonella enterica serotype Hadar and in the microbial community of activated sludge from hospital and urban wastewater treatment facilities in Belgium. FEMS Microbiol Lett 32:77–85

    Google Scholar 

  • Ikeda K, Ida O, Kimoto K, Takatorige T, Nakanishi N, Tatara K (1999) Effect of early fosfomycin treatment on prevention of hemolytic uremic syndrome accompanying Escherichia coli O157:H7 infection. Clin Nephrol 52:357–362

    CAS  PubMed  Google Scholar 

  • Keyes K, Hudson C, Maurer JJ, Thayer S, White DG, Lee MD (2000) Detection of florfenicol resistance genes in Escherichia coli isolated from sick chickens. Antimicrob Agents Chemother 44:421–424

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khan A, Das SC, Ramamurthy T, Sikdar A, Khanam J, Yamasaki S, Takeda Y, Nair GB (2002) Antibiotic resistance, virulence gene, and molecular profiles of shiga toxin-producing Escherichia coli isolates from diverse sources in Calcutta, India. J Clin Microbiol 40:2009–2015

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kimmitt PT, Harwood CR, Barer MR (2000) Toxin gene expression by Shiga toxin-producing Escherichia coli: the role of antibiotics and the bacterial SOS response. Emerg Infect Dis 6:458–465

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lanz R, Kuhnert P, Boerlin P (2003) Antimicrobial resistance and resistance gene determinants in clinical Escherichia coli from different animal species in Switzerland. Vet Microbiol 91:73–84

    Article  CAS  PubMed  Google Scholar 

  • Mantz AR, Miller DN, Spiehs MJ, Woodbury BL, Durso LM (2013) Persistence of erythromycin resistance gene erm(B) in cattle feedlot pens over time. Agric Food Anal Bacteriol 3:312–320

    Google Scholar 

  • Marti E, Jofre J, Balcazar JL (2013) Prevalence of antibiotic resistance genes and bacterial community composition in a river influenced by a wastewater treatment plant. PLoS ONE 8:e78906

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meng J, Doyle MP, Zhao T, Zhao S (2001) Enterohemorrhagic Escherichia coli O157:H7. In: Doyle MP, Beuchat LR, Montville TJ (eds) Food microbiology: Fundamentals and frontiers, 2nd edn. ASM Press, Washington, pp 193–213

    Google Scholar 

  • Mollenkopf DF, Weeman MF, Daniels JB, Abley MJ, Mathews JL, Gebreyes WA et al (2012) Variable within and between herd diversity of CTX-M cephalosporinase-bearing Escherichia coli isolates from dairy cattle. Appl Environ Microbiol 78:4552–456

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mollenkopf DF, Mirecki JM, Daniels JB, Funk JA, Henry SC, Hansen GE et al (2013) Escherichiacoli and Klebsiellapneumoniae producing CTX-M cephalosporinase from swine finishing barns and their association with antimicrobial use. Appl Environ Microbiol 79:1052–1054

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pakpour S, Jabaji S, Chénier MR (2012) Frequency of antibiotic resistance in a swine facility 2.5 years after a ban on antibiotics. Microb Ecol 63:41–50

    Article  CAS  PubMed  Google Scholar 

  • Rahal EA, Kazzi N, Sabra A, Abdelnoor AM, Matar GM (2011) Decrease in Shiga toxin expression using a minimal inhibitory concentration of rifampicin followed by bactericidal gentamicin treatment enhances survival of Escherichia coli O157:H7-infected BALB/c mice. Ann Clin Microbiol Antimicrob 10:34

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schroeder CM, White DG, Meng J (2004) Retail meat and poultry as a reservoir of antimicrobial-resistant Escherichia coli. Food Microbiol 21:249–255

    Article  Google Scholar 

  • Schwartz T, Kohnen W, Jansen B, Obst U (2003) Detection of antibiotic-resistance bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms. FEMS Microbiol Ecol 43:325–335

    Article  CAS  PubMed  Google Scholar 

  • Shelton DR, Karns JS, Higgins JA, Van Kessel JA, Perdue ML, Belt KT, Russell-Anelli J, Debroy C (2006) Impact of microbial diversity on rapid detection of enterohemorrhagic Escherichia coli in surface waters. FEMS Microbiol Lett 261:95–101

    Article  CAS  PubMed  Google Scholar 

  • Singer RS, Williams-Nguyen JW (2014) Human health impacts of antibiotic use in agriculture: A push for improved causal inference. Curr Opin Microbiol 19:1–8

    Article  PubMed  Google Scholar 

  • Srinivasan V, Nguyen LT, Headrick SI, Murinda SE, Oliver SP (2007) Antimicrobial resistance patterns of shiga toxin-producing Escherichia coli O157:H7 and O157:H7- from different origins. Microb Drug Resist 13:44–51

    Article  CAS  PubMed  Google Scholar 

  • Sunde M, Norström M (2005) The genetic background for streptomycin resistance in Escherichia coli influences the distribution of MICs. J Antimicrob Chemother 56:87–90

    Article  CAS  PubMed  Google Scholar 

  • Tadesse DA, Zhao S, Tong E, Ayers S, Singh A, Bartholomew MJ, McDermott PF (2012) Antimicrobial drug resistance in Escherichia coli from humans and food animals, United States, 1950-2002. Emerg Infect Dis 18:741–749

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tuckman M, Petersen PJ, Howe AYM, Orlowski M, Mullen S, Chan K, Bradford PA, Jones CH (2007) Occurrence of tetracycline resistance genes among Escherichia coli isolates from the phase 3 clinical trials of tigecycline. Antimicrob Agents Chemother 51:3205–3211

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vali L, Wisely KA, Pearce MC, Turner EJ, Knight HI, Smith AW, Amyes SGB (2004) High-level genotypic variation and antibiotic sensitivity among Escherichia coli O157 strains isolated from two Scottish beef cattle farms. Appl Environ Microbiol 70:5947–5954

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Van Kirk N, Roberts MC (2004) Antibiotic resistance and distribution of tetracycline resistance genes in Escherichia coli O157:H7 isolates from humans and bovines. Antimicrob Agents Chemother 48:1066–1067

    Article  PubMed Central  PubMed  Google Scholar 

  • Wilkerson C, Samadpour M, Van Kirk N, Roberts MC (2004) Antibiotic resistance and distribution of tetracycline resistance genes in Escherichia coli O157:H7 isolates from humans and bovines. Antimicrob Agents Chemother 48:1066–1067

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wong CS, Jelacic S, Habeeb RL, Watkins SL, Tarr PI (2000) The risk of hemolytic-uremic syndrome after antibiotic treatment of Escherichia coli O157:H7 infections. N Engl J Med 342:1930–1936

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou Z, Raskin L, Zilles JL (2009) Macrolide resistance in microorganisms at antimicrobial-free swine farms. Appl Environ Microbiol 75:5814–5820

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by The Scientific and Technological Research Council of Turkey (TUBITAK, project no: 110R013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naim Deniz Ayaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayaz, N.D., Gencay, Y.E. & Erol, I. Phenotypic and genotypic antibiotic resistance profiles of Escherichia coli O157 from cattle and slaughterhouse wastewater isolates. Ann Microbiol 65, 1137–1144 (2015). https://doi.org/10.1007/s13213-014-0961-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-014-0961-5

Keywords

Navigation