Skip to main content
Log in

Degradation of polyaromatic hydrocarbons employing biosurfactant-producing Bacillus pumilus KS2

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

An efficient hydrocarbon-degrading native bacterial strain Bacillus pumilus KS2 (identified by partial 16S rDNA gene sequencing) was isolated from crude oil-contaminated soil collected from oil fields of Lakowa, Sivasagar district of Assam, India. Experiments were conducted under laboratory conditions to determine the efficiency of this biosurfactant-producing strain to degrade polycyclicaromatic hydrocarbons (PAHs). Quantification of the capacity of the biosurfactant to reduce the surface tension (ST) of the culture medium was used as a measure of biosurfactant production. In terms of total petroleum hydrocarbon (TPH) degradation, strain KS2 was able to degrade 80.44 % of the TPH by 4 weeks of incubation. It also demonstrated efficient degradation of PAHs, completely degrading nine of the 16 major PAHs present in the crude oil sample. Strain KS2 also produced biosurfactant which, based on biochemical and FTIR analyses, was glycolipid in nature. To our knowledge, this is the first report showing the potential of a native strain of the North-East region of India for efficient degradation of TPH and PAHs and, consequently, in the remediation of hydrocarbons from contaminated sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev 45(1):180–209

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bamforth SM, Singleton I (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biotechnol 80:723–736

    Article  CAS  Google Scholar 

  • Banat IM (1995) Biosurfactant production and possible uses in microbial enhanced oil recovery and oil pollution remediation: review. Bioresour Technol 55:1–12

    Article  Google Scholar 

  • Bodour AA, Miller-Maier RM (1998) Application of a modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms. J Microbiol Methods 32:273–280

    Article  CAS  Google Scholar 

  • Bordoloi NK, Konwar BK (2009) Bacterial biosurfactant in enhancing solubility and metabolism of petroleum hydrocarbons. J Hazard Mater 170:495–505

    Article  CAS  PubMed  Google Scholar 

  • Das P, Mukherjee S, Sen R (2008) Improved bioavailability and biodegradation of a model polyaromatic hydrocarbon by a biosurfactant producing bacterium of marine origin. Chemosphere 72:1229–1234

    Article  CAS  PubMed  Google Scholar 

  • Déziel E, Paquette G, Villemur R, Lepine F, Bisaillon J (1996) Biosurfactant production by a soil Pseudomonas strain growing on polycyclic aromatic hydrocarbons. Appl Environ Microbiol 62:1908–1912

    Google Scholar 

  • Francy DS, Thomas JM, Raymond RL, Ward CH (1991) Emulsification of hydrocarbons by subsurface bacteria. J Ind Microbiol 8:237–246

    Article  CAS  Google Scholar 

  • Ganeshalingam S, Legge RL, Anderson WA (1994) Surfactant enhanced leaching of poly aromatic hydrocarbons from soil. Trans Inst Chem Eng 72:247–251

    Google Scholar 

  • George S, Jayachandran K (2009) Analysis of Rhamnolipid biosurfactants produced through submerged fermentation using orange fruit peelings as sole carbon source. Appl Biochem Biotechnol 158:694–705

    Article  CAS  PubMed  Google Scholar 

  • Georgiou G, Lin S, Sharma MM (1992) Surface-active compounds from microorganisms. Biotechnology 10:60–65

    Article  CAS  PubMed  Google Scholar 

  • Gilewicz M, Ni'matuzahroh T, Nadalig H, Budzinski H, Doumenq P, Michotey V, Bertrand JC (1997) Isolation and characterization of a marine bacterium capable of utilizing 2-methylphenanthrene. Appl Microbiol Biotechnol 48:528–533

    Article  CAS  PubMed  Google Scholar 

  • Harayama S (1997) Polycyclic aromatic hydrocarbon bioremediation design. Curr Opin Biotechnol 8:268–273

    Article  CAS  PubMed  Google Scholar 

  • Hickey AM, Gordon L, Dobson AD, Kelly CT, Doyle EM (2007) Effect of surfactants on fluoranthene degradation by Pseudomonas alcaligenes PA-10. Appl Microbiol Biotechnol 74(4):851–856

    Article  CAS  PubMed  Google Scholar 

  • Jacques RJS, Okeke BC, Bento FM, Peralba MCR, Camargo FAO (2007) Characterization of a polycyclic aromatic hydrocarbon-degrading microbial consortium from a petrochemical sludge land farming site. Biorem J 11:1–11

    Article  CAS  Google Scholar 

  • Kelley I, Cernigilia CE (1995) Degradation of a mixture of high-molecular-weight polycyclic aromatic hydro-carbons by a Mycobacterium strain PYR-1. J Soil Contam 4:77–91

    Article  CAS  Google Scholar 

  • Khanna P, Goyal D, Khanna S (2011) Pyrene degradation by Bacillus pumilus isolated from crude oil contaminated soil. Polycycl Aromat Compd 31(1):1–15

    Google Scholar 

  • Klug MJ, Markovetz AJ (1971) Utilization of aliphatic hydrocarbons by microorganism. Adv Microb Physiol 5:1–4

    Article  CAS  PubMed  Google Scholar 

  • Kumari B, Singh SN, Singh DP (2012) Characterization of two biosurfactant producing strains in crude oil degradation. Process Biochem 47:2463–2471

    Article  CAS  Google Scholar 

  • Ma B, Chen H, He Y, Xu JM (2010) Isolations and consortia of PAH-degrading bacteria from the rhizosphere of four crops in PAH contaminated field. In: 19th World Congress of Soil Science, Soil Solutions for a Changing World. Brisbane, pp 63–66 (published on DVD)

  • Mandri T, Lin J (2007) Isolation and characterization of engine oil degrading indigenous microorganisms in Kwazulu-Natal, South Africa. Afr J Biotechnol 6(1):23–27

    CAS  Google Scholar 

  • Mittal A, Singh P (2009) Isolation of hydrocarbon degrading bacteria from soils contaminated with crude oil spills. Indian J Exp Biol 47:760–765

    PubMed  Google Scholar 

  • Mulligan CN, Gibbs BF (2004) Types, production and applications of biosurfactants. Proc Indian Natl Sci Acad 70:31–55

    CAS  Google Scholar 

  • Nguyen TT, Youssef NH, Mclnerney MJ, Sabatini DA (2008) Rhamnolipid biosurfactant mixtures for environmental remediation. Water Res 42:1735–1743

    Article  CAS  PubMed  Google Scholar 

  • Nie M, Yin X, Ren C, Wang Y, Xu F, Shen Q (2010) Novel rhamnolipid biosurfactants produced by a polycyclic aromatic hydrocarbon degrading bacterium Pseudomonas aeruginosa strain NY3. Biotechnol Adv 28(5):635–643

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nievas ML, Commendatore MG, Estevas JL, Bucalá V (2008) Biodegradation pattern of hydrocarbons from a fuel oil-type complex residue by an emulsifier producing microbial consortium. J Hazard Mater 154:96–104

    Article  CAS  PubMed  Google Scholar 

  • Nilsson WB, Strom MS (2002) Detection and identification of bacterial pathogens of fish in kidney tissue using terminal restriction length polymorphism (T-RFLP) analysis of 16S rRNA genes. Dis Aquat Org 48:175–185

    Article  CAS  PubMed  Google Scholar 

  • Oberbremer A, Müller-Hurtig R, Wagner F (1990) Effect of the addition of microbial surfactants on hydrocarbon degradation in a soil population in a stirred reactor. Appl Microbiol Biotechnol 32(4):485–489

    Article  CAS  PubMed  Google Scholar 

  • Olivera NL, Commendatore MG, Delgado O, Esteves JL (2003) Microbial characterization and hydrocarbon biodegradation potential of natural bilge waste microflora. J Ind Microbiol Biotechnol 30(9):542–548

    Article  CAS  PubMed  Google Scholar 

  • Pacwa-Plociniczak M, Plaza GA, Piotrowska-Seget Z, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. J Mol Sci 12:633–654

    Article  CAS  Google Scholar 

  • Phan CW, Bakar NFA, Hamzah A (2013) A comparative study on biosurfactant activity of crude oil-degrading bacteria and its correlation to total petroleum hydrocarbon degradation. Biorem J 17(4):240–251

    Article  CAS  Google Scholar 

  • Rahman KSM, Banat IM, Thahira J, Thayumanavan T, Lakshmanaperumalsamy P (2002) Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith and rhamnolipid biosurfactant. Bioresour Technol 81:25–32

    Article  CAS  PubMed  Google Scholar 

  • Saikia RR, Deka S, Deka M, Banat IM (2012) Isolation of biosurfactant-producing Pseudomonas aeruginosa RS29 from oil-contaminated soil and evaluation of different nitrogen sources in biosurfactant production. Ann Microbiol 62:753–763

    Article  CAS  Google Scholar 

  • Samanta SK, Singh OV, Jain RK (2002) Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20(6):243–248

    Article  CAS  PubMed  Google Scholar 

  • Sawhney SK, Singh R (2000) Introductory practical biochemistry. Narosa Publishing House, New Delhi, pp 16–17

    Google Scholar 

  • Singh C, Lin J (2008) Isolation and characterization of diesel oil degrading indigenous microorganisms in Kwazulu-Natal, South Africa. Afr J Biotechnol 7(12):1927–1932

    Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thenmozhi R, Sornalaksmi AN, Nagasathya A, Praveenkumar D, Thajuddin N (2011) Characterisation of biosurfactant produced by bacterial isolates from engine oil contaminated soil. Adv Environ Biol 5(8):2402–2408

    CAS  Google Scholar 

  • Toledo FL, Calvo C, Rodelas B, Lez-Lopez GJ (2006) Selection and identification of bacteria isolated from waste crude oil with polycyclic aromatic hydrocarbons removal capacities. Syst Appl Microbiol 29:244–252

    Article  CAS  PubMed  Google Scholar 

  • Viramontes-Ramos S, Portillo-Ruiz MC, Ballinas-Casarrubias ML, Torres-Muñoz JV, Rivera-Chavira BE, Nevárez-Moorillón GV (2010) Selection of biosurfactant/bioemulsifier-producing bacteria from hydrocarbon contaminated soil. Braz J Microbiol 41:668–675

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wong JWC, Fang M, Zhao Z, Xing B (2004) Effect of surfactants on solubilization and degradation of phenanthrene under thermophilic conditions. J Environ Qual 33:2015–2025

    Article  CAS  PubMed  Google Scholar 

  • Ye D, Siddiqi MA, Maccubbin AE, Kumar S, Sikka HC (1996) Degradation of polynuclear aromatic hydro-carbons by Sphingomonas paucimobilis. Environ Sci Technol 30:136–142

    Article  CAS  Google Scholar 

  • Yuliani H, Sahlan M, Hermansyah H, Wijanarko A (2012) Selection and identification of polyaromatic hydrocarbon degrading bacteria. World Appl Sci J 20(8):1133–1138

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Director, Institute of Advanced Study in Science and Technology (IASST), Guwahati, India for providing laboratory facilities and encouraging the research. Kaustuvmani Patowary is also grateful to the Department of Science and Technology, Govt. of India for providing assistance as a Junior Research Fellow (JRF) to carry out the research work. We also thank Dr. N. Sen Sarma, Associate Professor, and Dr. A. Devi, Assistant Professor, IASST, for their assistance with the FTIR and GC analysis, respectively, at IASST, Guwahati. We expression our appreciation to Dr. Hemen Deka, RA, IASST, for the statistical analysis and Rajeev K. Brahma, Tezpur University, for the phylogenetic analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Deka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patowary, K., Saikia, R.R., Kalita, M.C. et al. Degradation of polyaromatic hydrocarbons employing biosurfactant-producing Bacillus pumilus KS2. Ann Microbiol 65, 225–234 (2015). https://doi.org/10.1007/s13213-014-0854-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-014-0854-7

Keywords

Navigation