Skip to main content
Log in

Genetically modified Saccharomyces cerevisiae for one-step fermentation of bioalcohol using corncob as sole carbon source

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

The corncob is an important biomass for bioalcohol production. However, there is a minor but complicated pretreatment process before it is used for bioalcohol fermentation. In this study, three genetically modified Saccharomyces cerevisiae Y33 strains containing endoglucanase (EG), cellobiohydrolase (CBH), and β-glucosidase (BG) genes were constructed. A one-step fermentation process was carried out with the recombinants using corncob as the sole carbon source. In a 3-L fermentation system, the concentration of alcohol reached 2.02 g/L and the concentration of glycerine reached 0.85 g/L after 96 h. The results prove that corncob powder can be utilized effectively by genetically modified Saccharomyces cerevisiae without any chemical pretreatment. The mixed recombinant Saccharomyces cerevisiae cells show effective synergism in the one-step fermentation system. It is feasible that corncob can be used as the sole carbon source in bioalcohol production with a one-step fermentation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Battcock M, Azam-Ali S (1998) Fermented fruits and vegetables: a global perspective. FAO Agric Serv, Bull 134:7–12

    Google Scholar 

  • Bothast RJ, Schlicher MA (2005) Biotechnological processes for conversion of corn into ethanol. Appl Microbiol Biotech 67:19–25

    Article  CAS  Google Scholar 

  • Choi IS, Wi SG, Kim SB, Bae HJ (2012) Conversion of coffee residue waste into bioethanol with using popping pretreatment. Bioresour Technol 125C:132–137

    Article  Google Scholar 

  • Dashtban M, Schraft H, Qin W (2009) Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Int J Biol Sci 5:578–595

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Demain AL, Newcomb M, Wu JHD (2005) Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 69:124–154

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A (2004) Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol 70:1207–1212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gomathi D, Muthulakshmi C, Kumar DG (2012) Production of bio-ethanol from pretreated agricultural byproduct using enzymatic hydrolysis and simultaneous saccharification. Mikrobiologiia 81:220–226

    CAS  PubMed  Google Scholar 

  • Gusakov AV, Kondratyeva EG, Sinitsyn AP (2011) Comparison of two methods for assaying reducing sugars in the determination of carbohydrase activities. Int J Anal Chem 2011:283658

    Article  PubMed Central  PubMed  Google Scholar 

  • Hari KS, Janardhan RT, Chowdary GV (2001) Simultaneous saccharification and fermentation of lignocellulosic wastes to ethanol using a thermotolerant yeast. Bioresource Technol 77:193–196

    Article  Google Scholar 

  • Kawai S, Hashimoto W, Murata K (2010) Transformation of Saccharomyces cerevisiae and other fungi. Bioeng Bugs 1:395–403

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu ZL, Weber SA, Cotta MA (2012) A new β-glucosidase producing yeast for lower-cost cellulosic ethanol production from xylose-extracted corncob residues by simultaneous saccharification and fermentation. Bioresource Technol 104:410–406

    Article  Google Scholar 

  • Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583

    Article  CAS  PubMed  Google Scholar 

  • Mutreja R, Das D, Goyal D, Goyal A (2011) Bioconversion of agricultural waste to ethanol by SSF using recombinant cellulase from Clostridium thermocellum. Enzyme Research 2011:340279

    Article  PubMed Central  PubMed  Google Scholar 

  • Olofsson K, Bertilsson M, Lidén G (2008) A short review on SSF - an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels 1:7

    Article  PubMed Central  PubMed  Google Scholar 

  • Pflügl S, Marx H, Mattanovich D, Sauer M (2012) 1,3-Propanediol production from glycerol with Lactobacillus diolivorans. Bioresour Technol 119:133–140

    Article  PubMed  Google Scholar 

  • Sambrook J. and Russell D.W. (2001). Molecular Cloning: A Laboratory Manual. 3rd edition, Cold Spring Harbor Laboratory Press

  • Stricker AR, Mach RL, de Graaff LH (2008) Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei ). Appl Microbiol Biotechnol 78:211–220

    Article  CAS  PubMed  Google Scholar 

  • Tsai SL, Oh J, Singh S, Chen R, Chen W (2009) Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production. Appl Environ Microbiol 75:6087–6093

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang PM, Zheng DQ, Liu TZ, Tao XL, Feng MG (2012) The combination of glycerol metabolic engineering and drug resistance marker-aided genome shuffling to improve very-high-gravity fermentation performances of industrial Saccharomyces cerevisiae. Bioresource Technol 108:203–210

    Article  Google Scholar 

  • Wen F, Sun J, Zhao H (2010) Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Appl Environ Microbiol 76:1251–1260

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yan J, Qiu T (2004) Determination of glycerol by cupric glycerinate colorimetry. China Oils and Fats 29:40–43

    Google Scholar 

  • Yasuda M, Miura A, Shiragami T (2012) Ethanol production from non-pretreated napiergrass through a simultaneous saccharification and fermentation process followed by a pentose fermentation with Escherichia coli KO11. J Biosci Bioeng 114:188–192

    Article  CAS  PubMed  Google Scholar 

  • Yu S, Yan Z, Tao M (2008) Simultaneous saccharification and fermentation of acid-pretreated corncobs with a recombinant Saccharomyces cerevisiae expressing β-glucosidase. Bioresource Technol 2007:5099–5103

    Google Scholar 

Download references

Acknowledgments

This work was supported by the following grants: National High Technology Research and Development Program ("863"Program: 2012AA020403, 2012AA02A701), Nation Natural Science Foundation of China (21076067), Program for New Century Excellent Talents in University (NCET-10-0153), Hubei Provincial Science Fund (2011CDA080, 2012DBA28001), Wuhan Science and Technology Bureau Program (2013060501010165).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengbing Jiang.

Additional information

Huiting Song, Jiashu Liu and Yang Liu these authors contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, H., Liu, J., Liu, Y. et al. Genetically modified Saccharomyces cerevisiae for one-step fermentation of bioalcohol using corncob as sole carbon source. Ann Microbiol 64, 781–785 (2014). https://doi.org/10.1007/s13213-013-0714-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-013-0714-x

Keywords

Navigation