Skip to main content
Log in

High biodiversity and potent anti-listerial action of complex red smear cheese microbial ripening consortia

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

When Listeria monocytogenes EGDe (serovar 1/2a) was cultivated in cell-free supernatants prepared from red smear cheese microbial ripening consortia grown for 8 h in liquid medium, 8 out of 49 supernatants exhibited a bactericidal activity, sometimes even reducing the inoculum of L. monocytogenes from 5 × 107 CFU/ml to zero after 24 h of incubation. Another five consortia displayed a bacteriostatic capacity. No inhibition in supernatants was observed when the complex consortia were incubated for a 10-min period only, indicating that the activity depends on actively growing consortia. Consortia displayed a very high biodiversity (Simpson’s strain diversity index up to 0.97, species diversity up to 0.89). However, biodiversity did not correlate with anti-listerial activity. There was no obvious similarity between the anti-listerial consortia studied, and no general difference in comparison to non-inhibitory communities. The proportion of lactic acid bacteria (LAB) in the consortia ranged between 3 and 45%. Therefore, the presence of 23 different LAB bacteriocin genes was investigated using specific PCR primers, identifying one to five bacteriocin genes in several consortia. In situ transcription of lactococcin G mRNA on the cheese surface was demonstrated by RT-PCR in five samples, but this bacteriocin displayed no anti-listerial activity. Supernatants subjected to thermal and enzymatic treatment suggested the presence of heat-stable, non-proteinaceous molecules as well as heat-labile compounds which are sensitive to proteolytic digestion. Probably, substances other than LAB bacteriocins are responsible for the pronounced antilisterial action of some supernatants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Benech RO, Kheadr EE, Laridi R, Lacroix C, Fliss I (2002) Inhibition of Listeria innocua in cheddar cheese by addition of nisin Z in liposomes or by in situ production in mixed culture. Appl Environ Microbiol 68:3683–3690

    Article  CAS  PubMed  Google Scholar 

  • Bockelmann W, Hoppe-Seyler T (2001) The surface flora of bacterial smear-ripened cheeses from cow's and goat's milk. Int Dairy J 11:307–314

    Article  CAS  Google Scholar 

  • Brennan NM, Cogan TM, Loessner M, Scherer S (2004) Bacterial surface-ripened cheeses. In: Fox PF, McSweeney PLH, Cogan TM, Guinee TP (ed) Cheese: Chemistry, Physics and Microbiology, vol 2, 3rd edn. Elsevier, Netherlands, pp 199–225

  • Carnio MC, Eppert I, Scherer S (1999) Analysis of the bacterial surface ripening flora of German and French smeared cheeses with respect to their anti-listerial potential. Int J Food Microbiol 47:89–97

    Article  CAS  PubMed  Google Scholar 

  • Carnio MC, Holtzel A, Rudolf M, Henle T, Jung G, Scherer S (2000) The macrocyclic peptide antibiotic micrococcin P(1) is secreted by the food-borne bacterium Staphylococcus equorum WS 2733 and inhibits Listeria monocytogenes on soft cheese. Appl Environ Microbiol 66:2378–2384

    Article  CAS  PubMed  Google Scholar 

  • Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3:777–788

    Article  CAS  PubMed  Google Scholar 

  • de Valk H, Jacquet C, Goulet V, Vaillant V, Perra A, Simon F, Desenclos JC, Martin P (2005) Surveillance of Listeria infections in Europe. Euro Surveill 10:251–255

    PubMed  Google Scholar 

  • Drider D, Fimland G, Hechard Y, McMullen LM, Prevost H (2006) The continuing story of class IIa bacteriocins. Microbiol Mol Biol Rev 70:564–582

    Article  CAS  PubMed  Google Scholar 

  • Eppert I, Valdes-Stauber N, Gotz H, Busse M, Scherer S (1997) Growth reduction of Listeria spp. caused by undefined industrial red smear cheese cultures and bacteriocin-producing Brevibacterium linens as evaluated in situ on soft cheese. Appl Environ Microbiol 63:4812–4817

    CAS  PubMed  Google Scholar 

  • Farber JM, Peterkin PI (1991) Listeria monocytogenes, a food-borne pathogen. Microbiol Rev 55:476–511

    CAS  PubMed  Google Scholar 

  • Feurer C, Irlinger F, Spinnler HE, Glaser P, Vallaeys T (2004) Assessment of the rind microbial diversity in a farmhouse-produced vs a pasteurized industrially produced soft red-smear cheese using both cultivation and rDNA-based methods. J Appl Microbiol 97:546–556

    Article  CAS  PubMed  Google Scholar 

  • Foulquié Moreno MR, Rea MC, Cogan TM, De Vuyst L (2003) Applicability of a bacteriocin-producing Enterococcus faecium as a co-culture in Cheddar cheese manufacture. Int J Food Microbiol 81:73–84

    Article  PubMed  Google Scholar 

  • Gandhi M, Chikindas ML (2007) Listeria: A foodborne pathogen that knows how to survive. Int J Food Microbiol 113:1–15

    Article  PubMed  Google Scholar 

  • Goerges S, Mounier J, Rea MC, Gelsomino R, Heise V, Beduhn R Cogan TM, Vancanneyt M, Scherer S (2008) Commercial ripening starter microorganisms inoculated into cheese milk do not successfully establish themselves in the resident microbial ripening consortia of a south German red smear cheese. Appl Environ Microbiol 74:2210–2217

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Fandos E, Dominguez JL (2006) Efficacy of lactic acid against Listeria monocytogenes attached to poultry skin during refrigerated storage. J Appl Microbiol 101:1331–1339

    Article  CAS  PubMed  Google Scholar 

  • Guillier L, Stahl V, Hezard B, Notz E, Briandet R (2008) Modelling the competitive growth between Listeria monocytogenes and biofilm microflora of smear cheese wooden shelves. Int J Food Microbiol 128:51–57

    Article  CAS  PubMed  Google Scholar 

  • Hütt P, Shchepetova J, Loivukene K, Kullisaar T, Mikelsaar M (2006) Antagonistic activity of probiotic lactobacilli and bifidobacteria against entero- and uropathogens. J Appl Microbiol 100:1324–1332

    Article  PubMed  Google Scholar 

  • Izquierdo E, Marchioni E, Aoude-Werner D, Hasselmann C, Ennahar S (2009) Smearing of soft cheese with Enterococcus faecium WHE 81, a multi-bacteriocin producer, against Listeria monocytogenes. Food Microbiol 26:16–20

    Article  CAS  PubMed  Google Scholar 

  • Jack RW, Tagg RJ, Ray B (1995) Bacteriocins of gram-positive bacteria. Microbiol Rev 59:171–200

    CAS  PubMed  Google Scholar 

  • Jacquet C, Rocourt J, Reynaud A (1993) Study of Listeria monocytogenes contamination in a dairy plant and characterization of the strains isolated. Int J Food Microbiol 20:13–22

    Article  CAS  PubMed  Google Scholar 

  • Kleerebezem M (2004) Quorum sensing control of lantibiotic production; nisin and subtilin autoregulate their own biosynthesis. Peptides 25:1405–1414

    Article  CAS  PubMed  Google Scholar 

  • Kümmerle M, Scherer S, Seiler H (1998) Rapid and reliable identification of food-borne yeasts by Fourier-transform infrared spectroscopy. Appl Environ Microbiol 64:2207–2214

    PubMed  Google Scholar 

  • Larpin S, Mondoloni C, Goerges S, Vernoux JP, Gueguen M, Desmasures N (2006) Geotrichum candidum dominates in yeast population dynamics in Livarot, a French red-smear cheese. FEMS Yeast Res 6:1243–1253

    Article  CAS  PubMed  Google Scholar 

  • Laukova A, Vlaemynck G, Czikkova S (2001) Effect of enterocin CCM 4231 on Listeria monocytogenes in Saint-Paulin cheese. Folia Microbiol (Praha) 46:157–160

    Article  CAS  Google Scholar 

  • Lecuit M (2005) Understanding how Listeria monocytogenes targets and crosses host barriers. Clin Microbiol Infect 11:430–436

    Article  CAS  PubMed  Google Scholar 

  • Little CL, Rhoades JR, Sagoo SK, Harris J, Greenwood M, Mithani V, Grant K, McLauchlin J (2008) Microbiological quality of retail cheeses made from raw, thermized or pasteurized milk in the UK. Food Microbiol 25:304–312

    Article  CAS  PubMed  Google Scholar 

  • Loessner M, Guenther S, Steffan S, Scherer S (2003) A pediocin-producing Lactobacillus plantarum strain inhibits Listeria monocytogenes in a multispecies cheese surface microbial ripening consortium. Appl Environ Microbiol 69:1854–1857

    Article  CAS  PubMed  Google Scholar 

  • Loncarevic S, Danielsson-Tham ML, Tham W (1995) Occurrence of Listeria monocytogenes in soft and semi-soft cheeses in retail outlets in Sweden. Int J Food Microbiol 26:245–250

    Article  CAS  PubMed  Google Scholar 

  • Loncarevic S, Bannerman E, Bille J, Danielsson-Tham ML, Tham W (1998) Characterization of Listeria strains isolated from soft and semi-soft cheeses. Food Microbiol 15:521–525

    Article  Google Scholar 

  • Maisnier-Patin S, Richard J (1995) Activity and purification of linenscin OC2, an antibacterial substance produced by Brevibacterium linens OC2, an orange cheese coryneform bacterium. Appl Environ Microbiol 61:1847–1852

    CAS  PubMed  Google Scholar 

  • McAuliffe O, Hill C, Ross RP (1999) Inhibition of Listeria monocytogenes in cottage cheese manufactured with a lacticin 3147-producing starter culture. J Appl Microbiol 86:251–256

    Article  CAS  PubMed  Google Scholar 

  • Nissen-Meyer J, Holo H, Havarstein LS, Sletten K, Nes IF (1992) A novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides. J Bacteriol 174:5686–5692

    CAS  PubMed  Google Scholar 

  • Oberreuter H, Seiler H, Scherer S (2002) Identification of coryneform bacteria and related taxa by Fourier-transform infrared (FT-IR) spectroscopy. Int J Syst Evol Microbiol 52:91–100

    CAS  PubMed  Google Scholar 

  • O'Sullivan L, O'Connor EB, Ross RP, Hill C (2006) Evaluation of live-culture-producing lacticin 3147 as a treatment for the control of Listeria monocytogenes on the surface of smear-ripened cheese. J Appl Microbiol 100:135–143

    Article  PubMed  Google Scholar 

  • Rea MC, Gorges S, Gelsomino R, Brennan NM, Mounier J, Vancanneyt M, Scherer S, Swings J, Cogan TM (2007) Stability of the biodiversity of the surface consortia of Gubbeen, a red-smear cheese. J Dairy Sci 90:2200–2210

    Article  CAS  PubMed  Google Scholar 

  • Romanova N, Favrin S, Griffiths MW (2002) Sensitivity of Listeria monocytogenes to sanitizers used in the meat processing industry. Appl Environ Microbiol 68:6405–6409

    Article  CAS  PubMed  Google Scholar 

  • Rudolf M, Scherer S (2001) High incidence of Listeria monocytogenes in European red smear cheese. Int J Food Microbiol 63:91–98

    Article  Google Scholar 

  • Ryan MP, Rea MC, Hill C, Ross RP (1996) An application in cheddar cheese manufacture for a strain of Lactococcus lactis producing a novel broad-spectrum bacteriocin, lacticin 3147. Appl Environ Microbiol 62:612–619

    CAS  PubMed  Google Scholar 

  • Saubusse M, Millet L, Delbes C, Callon C, Montel MC (2007) Application of Single Strand Conformation Polymorphism-PCR method for distinguishing cheese bacterial communities that inhibit Listeria monocytogenes. Int J Food Microbiol 116:126–135

    Article  CAS  PubMed  Google Scholar 

  • Simpson EH (1949) Measurement of diversity. Nature 163:688

    Article  Google Scholar 

  • Trmčić A, Obermajer T, Rogelj I, Bogovič Matijašić B (2008) Culture-independent detection of lactic acid bacteria bacteriocin genes in two traditional Slovenian raw milk cheeses and their microbial consortia. J Dairy Sci 91:4535–4541

    Article  PubMed  Google Scholar 

  • Valdes-Stauber N, Götz H, Busse M (1991) Antagonistic effect of coryneform bacteria from red smear cheese against Listeria species. Int J Food Microbiol 13:119–130

    Article  CAS  PubMed  Google Scholar 

  • Valdes-Stauber N, Scherer S (1994) Isolation and characterization of Linocin M18, a bacteriocin produced by Brevibacterium linens. Appl Environ Microbiol 60:3809–3814

    CAS  PubMed  Google Scholar 

  • Wenning M, Theilmann V, Scherer S (2006) Rapid analysis of two food-borne microbial communities at the species level by Fourier-transform infrared microspectroscopy. Environ Microbiol 8:848–857

    Article  CAS  PubMed  Google Scholar 

  • Wenning M, Scherer S, Naumann D (2008) Infrared spectroscopy in the identification of microorganism. In: Diem M, Griffith PR, Chalmers JM (eds) Vibrational spectroscopy for medical diagnosis. Wiley, New York, pp 71–96

    Google Scholar 

  • Wenning M, Büchl, NR, Scherer, S (2010) Species and strain identification of lactic acid bacteria using FTIR spectroscopy and artificial neural networks. J Biophotonics, in press

Download references

Acknowledgements

This study received research funding from the European Community’s Sixth Framework Programme. TRUEFOOD (Traditional United European Food) is an Integrated Project financed by the European Commission under the 6th Framework Programme for RTD (contract number FOOD-CT-2006-016264), and in part by the German Ministry of Economics and Technology (via AiF) and the FEI (Forschungskreis der Ernährungsindustrie e.V., Bonn). Project AiF 14786 N. The information in this document reflects only the author’s views while the funding agencies, especially the High European Community, are not liable for any use that may be made of the information contained therein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siegfried Scherer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1842 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bleicher, A., Obermajer, T., Matijašić, B.B. et al. High biodiversity and potent anti-listerial action of complex red smear cheese microbial ripening consortia. Ann Microbiol 60, 531–539 (2010). https://doi.org/10.1007/s13213-010-0083-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-010-0083-7

Keywords

Navigation