Skip to main content
Log in

Disrupted pathways associated with neonatal sepsis: Combination of protein-protein interactions and pathway data

BioChip Journal Aims and scope Submit manuscript

Abstract

To identify disrupted pathways associated with neonatal sepsis, we performed a research based on the combination of protein-protein interactions (PPIs) and pathway data. Firstly, a total of 23,292 genes, 787,896 PPIs and 1,675 human pathways were obtained, respectively. Then, under the threshold value of false discovery rate (FDR)<0.05 and a delta cut-off value >4.36, a total of 986 differentially expressed genes (DEGs) were identified. In the following, by degree centrality for the objective PPI network, 20 hub genes were obtained. Finally, pathway enrichment analysis and randomization tests indicated that pathways of gene expression, immune system and innate immune system were with remarkable significance in neonatal sepsis. Therefore, in the present study, we presented a novel pathway method, and we successfully identified several pathways in neonatal sepsis, which might be underlying indicators in the detection and treatment of neonatal sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Samsygina, G.A. et al. Sepsis in the newborn. Arkh. Patol. Suppl, 1–48 (2004).

    Google Scholar 

  2. Liu, L. et al. Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet 379, 2151–2161 (2012).

    Article  Google Scholar 

  3. Vergnano, S. et al. Neonatal sepsis: an international perspective. Arch. Dis. Child. Fetal Neonatal Ed. 90, F220–224 (2005).

    Article  CAS  Google Scholar 

  4. Lupu, F., Keshari, R.S., Lambris, J.D. & Coggeshall, K.M. Crosstalk between the coagulation and complement systems in sepsis. Thrombosis Research 133, S28–S31 (2014).

    Article  Google Scholar 

  5. Streimish, I. et al. Neutrophil CD64 with hematologic criteria for diagnosis of neonatal sepsis. Am. J. Perinatol. 31, 21–30 (2014).

    Article  Google Scholar 

  6. Abdollahi, A., Shoar, S., Nayyeri, F. & Shariat, M. Diagnostic Value of Simultaneous Measurement of Procalcitonin, Interleukin-6 and hs-CRP in Prediction of Early-Onset Neonatal Sepsis. Mediterr. J. Hematol. Infect. Dis. 4, e2012028 (2012).

    Article  Google Scholar 

  7. Dickinson, P. et al. Whole blood gene expression profiling of neonates with confirmed bacterial sepsis. Genomics Data 3, 41–48 (2015).

    Article  Google Scholar 

  8. Smith, C.L. et al. Identification of a human neonatal immune-metabolic network associated with bacterial infection. Nat. Commun. 5, 4649 (2014).

    CAS  Google Scholar 

  9. Stelzl, U. et al. A human protein-protein interaction network: a resource for annotating the proteome. Cell 122, 957–968 (2005).

    Article  CAS  Google Scholar 

  10. Dreze, M. et al. High-quality binary interactome mapping. Methods Enzymol. 470, 281–315 (2010).

    Article  CAS  Google Scholar 

  11. Szklarczyk, D. et al. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 39, D561–568 (2011).

    Article  CAS  Google Scholar 

  12. Ideker, T. & Sharan, R. Protein networks in disease. Genome Res. 18, 644–652 (2008).

    Article  CAS  Google Scholar 

  13. Venkatesan, K. et al. An empirical framework for binary interactome mapping. Nat. Methods 6, 83–90 (2009).

    Article  CAS  Google Scholar 

  14. Yu, H. et al. High-quality binary protein interaction map of the yeast interactome network. Science 322, 104–110 (2008).

    Article  CAS  Google Scholar 

  15. Xu, J. & Li, Y. Discovering disease-genes by topological features in human protein-protein interaction network. Bioinformatics 22, 2800–2805 (2006).

    Article  CAS  Google Scholar 

  16. Cary, M.P., Bader, G.D. & Sander, C. Pathway information for systems biology. FEBS Lett. 579, 1815–1820 (2005).

    Article  CAS  Google Scholar 

  17. Huang da, W., Sherman, B.T. & Lempicki, R.A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).

    Article  Google Scholar 

  18. Khatri, P., Sirota, M. & Butte, A.J. Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput. Biol. 8, e1002375 (2012).

    Article  CAS  Google Scholar 

  19. Gu, Z. et al. Centrality-based pathway enrichment: a systematic approach for finding significant pathways dominated by key genes. BMC Syst. Biol. 6, 56 (2012).

    Article  Google Scholar 

  20. Stoll, B.J. et al. Early onset neonatal sepsis: the burden of group B Streptococcal and E. coli disease continues. Pediatrics 127, 817–826 (2011).

    Article  Google Scholar 

  21. Hornik, C.P. et al. Early and late onset sepsis in verylow-birth-weight infants from a large group of neonatal intensive care units. Early Hum. Dev. 88 Suppl 2, S69–74 (2012).

    Article  Google Scholar 

  22. Sharma, A.A., Jen, R., Butler, A. & Lavoie, P.M. The developing human preterm neonatal immune system: a case for more research in this area. Clin. Immunol. 145, 61–68 (2012).

    Article  CAS  Google Scholar 

  23. Cuenca, A.G., Wynn, J.L., Moldawer, L.L. & Levy, O. Role of innate immunity in neonatal infection. Am. J. Perinatol. 30, 105–112 (2013).

    Article  Google Scholar 

  24. McDonagh, S. et al. Viral and bacterial pathogens at the maternal-fetal interface. J. Infect. Dis. 190, 826–834 (2004).

    Article  Google Scholar 

  25. Makhseed, M. et al. Th1 and Th2 cytokine profiles in recurrent aborters with successful pregnancy and with subsequent abortions. Hum. Reprod. 16, 2219–2226 (2001).

    Article  CAS  Google Scholar 

  26. Marchini, G. et al. Erythema toxicum neonatorum is an innate immune response to commensal microbes penetrated into the skin of the newborn infant. Pediatr Res. 58, 613–616 (2005).

    Article  Google Scholar 

  27. Janeway, C.A., Jr. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    Article  CAS  Google Scholar 

  28. Lyu, J. et al. Sepsis-induced brain mitochondrial dysfunction is associated with altered mitochondrial Src and PTP1B levels. Brain Res. 1620, 130–138 (2015).

    Article  CAS  Google Scholar 

  29. Liu, G., Wong, L. & Chua, H.N. Complex discovery from weighted PPI networks. Bioinformatics 25, 1891–1897 (2009).

    Article  CAS  Google Scholar 

  30. Croft, D. et al. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res. 39, D691–697 (2011).

    Article  CAS  Google Scholar 

  31. Zhao, J., Yang, T.-H., Huang, Y. & Holme, P. Ranking candidate disease genes from gene expression and protein interaction: a Katz-centrality based approach. PloS One 6, e24306 (2011).

    Article  CAS  Google Scholar 

  32. Tusher, V.G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA. 98, 5116–5121 (2001).

    Article  CAS  Google Scholar 

  33. Reiner, A., Yekutieli, D. & Benjamini, Y. Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 19, 368–375 (2003).

    Article  CAS  Google Scholar 

  34. Junker, B.H. & Schreiber, F. Analysis of biological networks. John Wiley & Sons. 2 (2011).

    Google Scholar 

  35. Brandes, U. & Erlebach, T. Network analysis: methodological foundations. Springer Science & Business Media. (2005).

    Google Scholar 

  36. Koschützki, D. & Schreiber, F. Centrality analysis methods for biological networks and their application to gene regulatory networks. Gene Regul. Syst. Bio. 2, 193 (2008).

    Google Scholar 

  37. He, X. & Zhang, J. Why do hubs tend to be essential in protein networks? PLoS Genet. 2, e88 (2006).

    Article  Google Scholar 

  38. Allen, H.L. et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467, 832–838 (2010).

    Article  Google Scholar 

  39. Edgington, E. & Onghena, P. Randomization tests. CRC Press. (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongmei Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, X., Zhu, S., Zhang, S. et al. Disrupted pathways associated with neonatal sepsis: Combination of protein-protein interactions and pathway data. BioChip J 11, 1–7 (2017). https://doi.org/10.1007/s13206-016-1101-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-016-1101-z

Keywords

Navigation