Skip to main content
Log in

Epigenetic Regulation of miR-22 in a BPA-exposed Human Hepatoma Cell

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Bisphenol A (BPA), an widely used environmental chemical, is encircled to human life. However, we generally do not know whether or not it can cause negative health effects. One of the representative epigenetic changes that inhibit gene expression is DNA methylation, which has been very well studied in association with cancer and development. Gene function is changed by DNA methylation; however, its genetic code does not change. Our study hypothesized that a post-transcriptional change in DNA occurs due to exposure to BPA. These changes then cause regulation of microRNA and gene expression. To identify these successional regulations, we conducted microarraybased assays. For validation, also we conducted bisulfite sequencing, quantitative real-time PCR, miRNA inhibitor assay, and Western blotting. We found 1,751 hypo-methylation changed regions, and several micro- RNA had included methylated-regions. miR-22 was also hypomethylated (chr17:1563947-1564031) by BPA-exposure, and expression of miR-22 was up-regulated in an miRNA array and real-time PCR. miR- 22 has been reported to inhibit estrogen signaling by direct targeting of the estrogen receptor alpha mRNA. Taking notice of this point, we analyzed gene expression profiles that included its predicted targets. In the present study, we found the cause of hypomethylation of miR-22 and negative regulation of its apoptosisrelated target gene expression by BPA-exposure. These results suggests that BPA can alter sequential genomic appearances in HepG2 cells, a potentially affection of BPA toxicity. Also, the results of our study support that toxicology study need to integrated analysis of array-based assays for help in understanding of the molecular action of environmental toxicants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nuwaysir, E.F., Bittner, M., Trent, J., Barrett, J.C. & Afshari, C.A. Microarrays and toxicology: the advent of toxicogenomics. Mol. Carcinog. 24, 153–159 (1999).

    Article  CAS  Google Scholar 

  2. Donald, S. et al. Hepatobiliary damage and changes in hepatic gene expression caused by the antitumor drug ecteinascidin-743 (ET-743) in the female rat. Cancer Res. 62, 4256–4262 (2002).

    CAS  Google Scholar 

  3. Heinloth, A.N. et al. Gene expression profiling of rat livers reveals indicators of potential adverse effects. Toxicol. Sci. 80, 193–202 (2004).

    Article  CAS  Google Scholar 

  4. Kim, S.J. et al. HazChem human array V3: Classification of environmental toxicants through gene expression pattern for risk assessment. BioChip J. 3, 293–298 (2009).

    Google Scholar 

  5. Okada, H. et al. Direct evidence revealing structural elements essential for the high binding ability of bisphenol A to human estrogen-related receptor-γ. Environ. Health Perspect. 116, 32–38 (2008).

    Article  CAS  Google Scholar 

  6. Mikol, Y.B., Hoover, K.L., Creasia, D. & Poirier, L.A. Hepatocarcinogenesis in rats fed methyl-deficient, amino acid-defined diets. Carcinogenesis 4, 1619–1629 (1983).

    Article  CAS  Google Scholar 

  7. Yu, M.C., Yuan, J.M. & Lu, S.C. Alcohol, cofactors and the genetics of hepatocellular carcinoma. J. Gastroenterol. Hepatol. 23, S92–S97 (2008).

    Article  CAS  Google Scholar 

  8. Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  Google Scholar 

  9. Chen, C.-Z., Li, L., Lodish, H.F. & Bartel, D.P. Micro-RNAs modulate hematopoietic lineage differentiation. Science 303, 83–86 (2004).

    Article  CAS  Google Scholar 

  10. Garzon, R., Fabbri, M., Cimmino, A., Calin, G.A. & Croce, C.M. MicroRNA expression and function in cancer. Trends Mol. Med. 12, 580–587 (2006).

    Article  CAS  Google Scholar 

  11. Dolinoy, D.C., Huang, D. & Jirtle, R.L. Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc. Natl. Acad. Sci. 104, 13056–13061 (2007).

    Article  CAS  Google Scholar 

  12. Pandey, D.P. & Picard, D. miR-22 inhibits estrogen signaling by directly targeting the estrogen receptor α mRNA. Mol. Cell. Biol. 29, 3783–3790 (2009).

    Article  CAS  Google Scholar 

  13. Chou, F., Chung, H., Liu, H., Chi, C. & Lui, W. Suitability of boron carriers for BNCT: Accumulation of boron in malignant and normal liver cells after treatment with BPA, BSH and BA. Appl. Radiat. Isot. 67, S105–S108 (2009).

    Article  CAS  Google Scholar 

  14. Hanet, N. et al. Effects of endocrine disruptors on genes associated with 17β-estradiol metabolism and excretion. Steroids 73, 1242–1251 (2008).

    Article  CAS  Google Scholar 

  15. Zilberman, D., Gehring, M., Tran, R.K., Ballinger, T. & Henikoff, S. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat. Genet. 39, 61–69 (2006).

    Article  Google Scholar 

  16. O’Connor, J.C. & Chapin, R.E. Critical evaluation of observed adverse effects of endocrine active substances on reproduction and development, the immune system, and the nervous system. Pure. Appl. Chem. 75, 2099–2123 (2003).

    Google Scholar 

  17. Richter, C.A., Taylor, J.A., Ruhlen, R.L., Welshons, W.V. & vom Saal, F.S. Estradiol and Bisphenol a stimulate androgen receptor and estrogen receptor gene expression in fetal mouse prostate mesenchyme cells. Environmental Health Perspectives, 902–908 (2007).

    Google Scholar 

  18. Esteller, M. Epigenetics in cancer. N. Engl. J. Med. 358, 1148–1159 (2008).

    Article  CAS  Google Scholar 

  19. Merlo, A. et al. 5’ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat. Med. 1, 686–692 (1995).

    Article  CAS  Google Scholar 

  20. Gregory, R.I., Chendrimada, T.P., Cooch, N. & Shiekhattar, R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123, 631–640 (2005).

    Article  CAS  Google Scholar 

  21. Lujambio, A. et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res. 67, 1424–1429 (2007).

    Article  CAS  Google Scholar 

  22. Gabai, V.L. et al. Hsp72-mediated suppression of c- Jun N-terminal kinase is implicated in development of tolerance to caspase-independent cell death. Mol. Cell. Biol. 20, 6826–6836 (2000).

    Article  CAS  Google Scholar 

  23. Chen, C.-J. et al. Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nat. Med. 13, 851–856 (2007).

    Article  CAS  Google Scholar 

  24. Kol, S. et al. The rat intraovarian interleukin (IL)-1 system: cellular localization, cyclic variation and hormonal regulation of IL-1β and of the type I and type II IL-1 receptors. Mol. Cell. Endocrinol. 149, 115–128 (1999).

    Article  CAS  Google Scholar 

  25. Soung, Y.H. et al. Inactivating mutations of CASPASE- 7 gene in human cancers. Oncogene 22, 8048–8052 (2003).

    Article  Google Scholar 

  26. Diener, K. et al. Activation of the c-Jun N-terminal kinase pathway by a novel protein kinase related to human germinal center kinase. Proc. Natl. Acad. Sci. 94, 9687–9692 (1997).

    Article  CAS  Google Scholar 

  27. Revankar, C.M., Vines, C.M., Cimino, D.F. & Prossnitz, E.R. Arrestins block G protein-coupled receptor- mediated apoptosis. J. Biol. Chem. 279, 24578–24584 (2004).

    Article  CAS  Google Scholar 

  28. Salehi, A.H., Xanthoudakis, S. & Barker, P.A. NRAGE, a p75 neurotrophin receptor-interacting protein, induces caspase activation and cell death through a JNK-dependent mitochondrial pathway. J. Biol. Chem. 277, 48043–48050 (2002).

    Article  CAS  Google Scholar 

  29. Adams, B.D., Furneaux, H. & White, B.A. The microribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-α (ERα) and represses ERα messenger RNA and protein expression in breast cancer cell lines. Mol. Endocrinol. 21, 1132–1147 (2007).

    Article  CAS  Google Scholar 

  30. Zhao, J.-J. et al. MicroRNA-221/222 negatively regulates estrogen receptor α and is associated with tamoxifen resistance in breast cancer. J. Biol. Chem. 283, 31079–31086 (2008).

    Article  CAS  Google Scholar 

  31. Park, K. & Kwak, I.-S. Molecular effects of endo-crine-disrupting chemicals on the Chironomus riparius estrogen-related receptor gene. Chemosphere 79, 934–941 (2010).

    Article  CAS  Google Scholar 

  32. Kim, S.J. et al. Toxicogenomic Effect of Liver-toxic Environmental Chemicals in Human Hepatoma Cell Line. Mol. Cell. Toxicol. 5, 310–316 (2009)

    Google Scholar 

  33. Chen, C. et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 33, e179–e179 (2005).

    Article  Google Scholar 

  34. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Yong Hwang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.J., Yu, SY., Yoon, HJ. et al. Epigenetic Regulation of miR-22 in a BPA-exposed Human Hepatoma Cell. BioChip J 9, 76–84 (2015). https://doi.org/10.1007/s13206-014-9110-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-014-9110-2

Keywords

Navigation