Skip to main content
Log in

Extensional flow-based microfluidic device: deformability assessment of red blood cells in contact with tumor cells

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Red blood cell (RBC) deformability has become one of the important factors to assess blood and cardiovascular diseases. The interest on blood studies have promoted a development of various microfluidic devices that treat and analyse blood cells. Recent years, besides the RBC deformability assessment, these devices are often applied to cancer cell detection and isolation from the whole blood. The devices for cancer cell isolation rely mainly on size and deformability of the cells. However, the examination of deformability of the RBCs mixed with cancer cells is lacking. This study aims at determining the deformation index (DI) of the RBCs in contact with cancer cells using a hyperbolic microchannel which generates a strong extensional flow. The DIs of human healthy RBCs and human RBCs in contact with a tumor cell line (HCT-15, colon carcinoma) were compared by analyzing the flowing RBCs images captured by a high speed camera. The results reveal that the RBCs that were in contact with HCT-15 cells have lower deformability than the normal RBCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caro, C., Pedley, T., Schroter, R. & Seed, W. The Mechanics of the Circulation. Oxford University Press (1978).

    Google Scholar 

  2. Skalak, R. & Branemark, P-I. Deformation of red blood cells in capillaries. Science 164, 717–719 (1969).

    Article  CAS  Google Scholar 

  3. Abkarian, M. et al. Cellular-scale hydrodynamics. Biomed. Mater. 3, 034011 (2008).

    Article  CAS  Google Scholar 

  4. Hardeman, M.R. & Ince, C. Clinical potential of in vitro measured red cell deformability, a myth? Clin. Hemorheol. Microcirc. 21, 277–284 (1999).

    CAS  Google Scholar 

  5. Cho, Y.I., Mooney, M.P. & Cho, D.J. Hemorheological disorders in diabetes mellitus. J. Diabetes Sci. Technol. 2, 1130–1138 (2008).

    Article  Google Scholar 

  6. Gueguen, M. et al. Filtration pressure and red blood cell deformability: evaluation of a new device: erythrometre. Biorheology Suppl 1, 261–265 (1984).

    CAS  Google Scholar 

  7. Shin, S., Ku, Y., Park, M.S. & Suh, J.S. Measurement of red cell deformability and whole blood viscosity using laser-diffraction slit rheometer. Korea-Australia Rheol. J. 16, 85–90 (2004).

    Google Scholar 

  8. Dobbe, J.G.G. et al. Analyzing red blood cell-deformability distributions. Blood Cells Mol. Dis. 28, 373–384 (2002).

    Article  CAS  Google Scholar 

  9. Mokken, F.C., Kedaria, M., Henny, C.P., Hardeman, M.R. & Gelb, A.W. The clinical importance of erythtrocyte deformability, a hemorrheological parameter. Ann. Hematol. 64, 113–122 (1992).

    Article  CAS  Google Scholar 

  10. Bow, H. et al. A microfabricated deformability-based flow cytometer with application to malaria. Lab Chip 11, 1065–1073 (2011).

    Article  CAS  Google Scholar 

  11. Lima, R. et al. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system. Biomed. Microdevices 10, 153–167 (2008).

    Article  Google Scholar 

  12. Fujiwara, H. et al. Red blood cell motions in a high hematocrit blood flowing through a stenosed microchannel. J. Biomech. 42, 838–843 (2009).

    Article  CAS  Google Scholar 

  13. Lima, R. et al. Axisymmetric PDMS microchannels for in vitro haemodynamics studies. Biofabrication 1, 035005 (2009).

    Article  CAS  Google Scholar 

  14. Lee, S.S., Yim, Y., Ahn, K.H. & Lee, S.J. Extensional flow-based assessment of red blood cell deformability using hyperbolic converging microchannel. Biomed. Microdevices 11, 1021–1027 (2009).

    Article  Google Scholar 

  15. Zhao, R. et al. Microscopic investigation of erythrocyte deformation dynamics. Biorheology 43, 747–765 (2006).

    Google Scholar 

  16. Yaginuma, T., Oliveira, M.S.N., Lima, R., Ishikawa, T. & Yamaguchi, T. Human red blood cell behavior under homogeneous extensional flow in a hyperbolicshaped microchannel. Biomicrofluidics 7, 054110 (2013).

    Article  CAS  Google Scholar 

  17. Pinho, D., Yaginuma, T. & Lima, R. A microfluidic device for partial cell separation and deformability assessment. BioChip J. 7, 367–374 (2013).

    Article  CAS  Google Scholar 

  18. Hou, H.W. et al. Microfluidics for applications in cell mechanics and mechanobiology. Cel. Mol. Bioeng. 4, 591–602, (2011).

    Article  Google Scholar 

  19. Tan, S.J., Yobas, L., Lee, G.Y., Ong, C.N. & Lim, C.T. Microdevice for the isolation and enumeration of cancer cells from blood. Biomed. Microdevices 11, 883–892 (2009).

    Article  Google Scholar 

  20. Mohamed, H., Murray, M., Turner, J.N. & Caggana, M. Isolation of tumor cells using size and deformation. J. Chromatogr. A 1216, 8289–8295 (2009).

    Article  CAS  Google Scholar 

  21. Hur, S.C., Henderson-MacLennan, N.K., McCabe, E.R. & Di Carlo, D. Deformability-based cell classification and enrichment using inertial microfluidics. Lab Chip 11, 912–920 (2011).

    Article  CAS  Google Scholar 

  22. Tanaka, T. et al. Separation of cancer cells from a red blood cell suspension using inertial force. Lab Chip 12, 4336–4343 (2012).

    Article  CAS  Google Scholar 

  23. Lee, M.G., Shin, J.H., Bae, C.Y., Choi, S. & Park, J.K. Label-free cancer cell separation from human whole blood using inertial microfluidics at low shear stress. Anal. Chem. 85, 6213–6218 (2013).

    Article  CAS  Google Scholar 

  24. Jain, R.K. Determinants of tumor blood flow: a review. Cancer Res. 48, 2641–2658 (1988).

    CAS  Google Scholar 

  25. Sevick, E.M. & Jain, R.K. Effect of red blood cell rigidity on tumor blood flow: increase in viscous resistance during hyperglycemia. Cancer Res. 51, 2727–2730 (1991).

    CAS  Google Scholar 

  26. Kuzman, D. et al. Effect of pH on red blood cell deformability. Pflugers Arch. 440, R193–194 (2000).

    Article  CAS  Google Scholar 

  27. Griffiths, J.R. Are cancer cells acidic? Br. J. Cancer 64, 425–427 (1991).

    Article  CAS  Google Scholar 

  28. Estrella, V. et al. Acidity generated by the tumor microenvironment drives local invasion. Cancer Res. 73, 1524–1535 (2013).

    Article  CAS  Google Scholar 

  29. Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979).

    Article  Google Scholar 

  30. Abramoff, M.D., Magalhaes, P.J. & Ram, S.J. Image Processing with ImageJ. Biophotonics Int. 11, 36–42 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Lima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faustino, V., Pinho, D., Yaginuma, T. et al. Extensional flow-based microfluidic device: deformability assessment of red blood cells in contact with tumor cells. BioChip J 8, 42–47 (2014). https://doi.org/10.1007/s13206-014-8107-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-014-8107-1

Keywords

Navigation