Skip to main content
Log in

Chitosan and chitosan nanoparticles as adjuvant in local Rift Valley Fever inactivated vaccine

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The present study aimed to improve the potency of inactivated Rift Valley Fever Virus (RVFV) vaccine using chitosan (CS) or chitosan nanoparticles (CNP) as adjuvants. Chitosan nanoparticles were prepared by ionic gelation method. Rift Valley Fever Virus (RVFV) inactivated antigen was loaded on CS and CNP to form two vaccine formulations, RVFV-chitosan nanoparticles based vaccine (RVFV-CNP) and RVFV chitosan based vaccine (RVFV-CS). Five groups of mice were used in this study, each group was injected with one of the following: phosphate buffer saline (group1 G1), RVFV-CNP (G2), (RVF-CS) (G3), RVFV-Alum based vaccine (RVFV-Alum) (G4) and adjuvant free RVFV inactivated antigen (RVFV-Ag) (G5). The immunization was performed twice with 2 weeks interval. The results showed that, RVFV-CNP vaccine enhanced strongly the phagocytic activity of peritoneal macrophage (PM), neutralization antibodies titer against RVFV and IgG values against RVFV nucleoprotein than other vaccine formulations did. In addition, the RVFV-CNP and RVF-CS vaccines upregulate the gene expression of IL-2, IFN-γ (which promote cell mediated immunity) and IL-4 (which promote humeral immunity), while RVFV-Alum vaccine upregulate the gene expression of IL-4 only. These findings indicated that CS and CNP were comparable to the alum as adjuvant in efficacy but superior to it in inducing cell-mediated immune response and might be a candidate adjuvant for inactivated RVFV vaccine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • AL-Nemrawi N, AL-Sharif SM, Daver RH (2018) Preparation of chitosan-TPP nanoparticles: the influence of chitosan properties and formulation variables. Int J Appl Pharm 10(5):60–65

    CAS  Google Scholar 

  • Averhoff F, Mahoney F, Coleman P, Schatz G, Hurwitz E (1998) Immunogenicity of hepatitis B vaccines: implications for persons at occupational risk of hepatitis B virus. Am J Prev Med 15:1–8

    CAS  PubMed  Google Scholar 

  • Carroll EC, Jin L, Mori A, Muñoz-Wol N, Oleszycka E, Moran HBT, Mansouri S, Entee P, Lambe E, Agger EM, Andersen P, Cunningham C, Hertzog P, Fitzgerald KA, Bowie G, Lavelle EC (2016) The vaccine adjuvant chitosan promotes cellular immunity via DNA sensor cGAS-STING-dependent induction of type I interferons. Immunity 44(3):597–608

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coetzer JA (1982) The pathology of Rift Valley fever. II. Lesions occurring in field cases in adult cattle, calves and aborted foetuses. J Vet Res 49:11–17

    CAS  Google Scholar 

  • Confavreux C, Suissa A, Saddier P, Bourdes V, Vukusic S (2001) Vaccinations and the risk of relapse of multiple sclerosis. Vaccines in multiple sclerosis group. N Engl J Med 344:319–326

    CAS  PubMed  Google Scholar 

  • Dzung NH, Ha NT, Van DT, Phuong NTL, Puynh NTN, Hiep LV (2011) Chitosan nanoparticle as a novel delivery system for A/H1n1 influenza vaccine: safe property and immunogenicity in mice. World Acad Sci Eng Technol 60:1839–1846

    Google Scholar 

  • Ellis DS, Shirodaria PV, Fleming E, Simpson D (1988) Morphology and development of RVF virus in vero-cell cultures. J Med Virol 24(2):161–173

    CAS  PubMed  Google Scholar 

  • Gubler DJ (2002) The global emergence/resurgence of arboviral diseases as public health problems. Arch Med Res 33:330–342

    PubMed  Google Scholar 

  • Gupta NK, Tomar P, Sharma V, Dixit VK (2011) Development and characterization of chitosan coated poly-(ε-caprolactone) nanoparticulate system for effective immunization against influenza. Vaccine 29(48):9026–9037

    CAS  PubMed  Google Scholar 

  • Han HD, Byeon Y, Jang JH, Jeon HN, Kim GH, Kim MG, Pack CG, Kang TH, Jung ID, Lim YT, Lee YJ, Lee JW, Shin BC, Ahn HJ, Sood AK, Park YM (2016) In vivo stepwise immunomodulation using chitosan nanoparticles as platform nanotechnology for cancer immunotherapy. Sci Rep 6:38348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hassani S, Laouini A, Fessi H, Charcosset C (2015) Preparation of chitosan–TPP nanoparticles using micro engineered membranes—effect of parameters and encapsulation of tacrine. Coll Surf A 482(5):34–43

    CAS  Google Scholar 

  • Himeidan YE (2016) Rift valley fever: current challenges and future prospects. Res Rep Trop Med 7:1–9

    PubMed  PubMed Central  Google Scholar 

  • Huang T, Song X, Jing J, Zhao K, Shen Y, Zhang W, Yue B (2018) Chitosan-DNA nanoparticles enhanced the immunogenicity of multivalent DNA vaccination on mice against Trueperella pyogenes infection. J Nanobiotechnol 16(8):1–15

    Google Scholar 

  • Jain S, Yadav H, Sinha PR, Marotta F (2009) Modulation of cytokine gene expression in spleen and Peyer’s patches by feeding Dahi containing probiotic Lactobacillus casei in mice. J Dig Dis 10:49–54

    CAS  PubMed  Google Scholar 

  • Kenawy MA, Abdel-Hamid YM, Beierc JC (2018) Rift Valley Fever in Egypt and other African countries: historical review, recent outbreaks and possibility of disease occurrence in Egypt. Acta Trop 181:40–49

    PubMed  Google Scholar 

  • Khalili I, Ghadimipou R, Khalili MT (2015) Evaluation of immune response against inactivated avian influenza (H9N2) vaccine, by using chitosan nanoparticles. Jundishapur J Microbiol 8(12):e27035

    PubMed  PubMed Central  Google Scholar 

  • Kool M, Soullié T, Van Nimwegen M, Willart MA, Muskens F, Jung S, Hoogsteden HC, Hammad H, Lambrecht B (2008) Alum adjuvants boosts adaptive immunity by inducing uric acid and activating inflammatory den-dritic cells. J Exp Med 205(4):869–882

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koppolu B, Zaharoff DA (2013) Effect of antigen encapsulation in chitosan particles on uptake, activation and presentation by antigen presenting cells. Biomaterials 34(9):2359–2369

    CAS  PubMed  Google Scholar 

  • Li X, Min M, Du N, Gu Y, Hode T, Naylor M, Chen D, Nordquist RE, Chen WR (2013) Chitin, chitosan, and glycated chitosan regulate immune responses: the novel adjuvants for cancer vaccine. Clin Dev Immunol 2013:387023

    PubMed  PubMed Central  Google Scholar 

  • Marrack P, McKee AS, Munks MW (2009) Towards an understanding of the adjuvant action of aluminium. Nat Rev Immunol 9:287–293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mirzaei F, Mohammadpour DN, Avadi MR, Rezayat MA (2017) New approach to antivenom preparation using chitosan nanoparticles containing Echis carinatus venom as a novel antigen delivery system. IJBR 16(3):858–867

    CAS  Google Scholar 

  • Murakami S, Terasaki K, Ramirez SI, Morrill JC, Makino S (2014) Development of a novel, single-cycle replicable rift valley fever vaccine. PLoS Negl Trop Dis 8(3):2746

    Google Scholar 

  • Office International Des Epizooties (OIE) (2008) Manual of standards for diagnostic tests and Vaccines, 6th edn. World Organization for Animal Health

  • Peeters TL, Vantrapen GR (1977) Factors influencing lysozyme determination by lysoplate method. Clin Chim Acta 74(3):217–255

    CAS  PubMed  Google Scholar 

  • Peluso G, Petillo O, Ranieri M, Santin M, Ambrosio LD, Calabro D, Avallone B, Balsamo G (1994) Chitosan-mediated stimulation of macrophage function. Biomaterials 15:1215–1220

    CAS  PubMed  Google Scholar 

  • Pulendran B, Ahmed R (2006) Translating innate immunity into immunological memory: implications for vaccine development. Cell 124:849–863

    CAS  PubMed  Google Scholar 

  • Rajan TV, Porte P, Yates JA, Keefer L, Shultz LD (1996) Role of nitric oxide in host defense against an extracellular, metazoan parasite, Brugia malayi. Infect Immun 64:3351–3353

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seferia PG, Martinez ML (2001) Immune stimulating activity of two new chitosan containing adjuvant formulation. Vaccine 19:661–668

    Google Scholar 

  • Sisto F, Miluzio A, Leopardi O, Mirra M, Boelaert JR, Taramelli D (2003) Differential cytokine pattern in the spleens and livers of BALB/c mice infected with Penicillium marneffei: protective role of gamma interferon. Infect Immun 71(1):465–473

    CAS  PubMed  PubMed Central  Google Scholar 

  • SPSS (2006) Statistical Package for Social Science, SPSS for windows Release Standard Version, Copyright SPSS Inc

  • Temsahy MME, Kerdany EDHE, Eissa MM, Shalaby TI, TalaatI M, Mogahed NMFH (2014) The effect of chitosan nanospheres on the immunogenicity of Toxoplasma lysate vaccine in mice. J Parasitic Dis 40:1–6

    Google Scholar 

  • Ulanova M, Tarkowski A, Hahn-Zoric M, Hanson LA (2001) The common vaccine adjuvant aluminum hydroxide up-regulates accessory properties of human monocytes via an interleukin-4-dependent mechanism. Infect Immun 69(2):1151–1159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Lubben IM, Verhoef JC, Borchard G, Junginger HE (2001) Chitosan and its derivatives in mucosal drug and vaccine delivery. Eur J Pharm Sci 14:201–207

    PubMed  Google Scholar 

  • Victor VM, Rocha M, La Fuenle De (2003) Regulation of macrophage function by the antioxidant N-acetyle cysteine in mouse-oxidative stress by endotoxin. Int Immunopharmacol 3:97–106

    CAS  PubMed  Google Scholar 

  • Wack A, Rappuoli R (2005) Vaccinology at the beginning of the 21st century. Curr Opin Immunol 17:411–418

    CAS  PubMed  Google Scholar 

  • Wardani G, Sudjarwo SA (2018) Immunostimulatory activity of chitosan nanoparticles on Wistar Albino Rats. Pharmacog J 10(5):892–898

    CAS  Google Scholar 

  • Wen ZS, Xu YL, Zou XT, Xu ZR (2011) Chitosan nano-particles act as an adjuvant to promote both Th1 and Th2 immune responses induced by ovalbumin in mice. Mar Drugs 9:1038–1055

    CAS  PubMed  PubMed Central  Google Scholar 

  • West MA, Wallin RP, Matthews SP, Svensson HG, Zaru R, Ljunggren HG, Prescott AR, Watts C (2004) Enhanced dendritic cellantigen capture via toll-like receptor-induced actin remodeling. Science 305:1153–1157

    CAS  PubMed  Google Scholar 

  • Wu N, Wen ZS, Xiang XW, Huang YN, Gao Y, Qu YL (2015) Immuno-simulative activity of low molecular weight chitosans in RAW264.7 macrophages. Mar Drugs 13(10):6210–6225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang W, Fu J, Wang T, He N (2009) Chitosan/sodium tripolyphosphate nanoparticles: preparation, characterization and application as drug carrier. J Biomed Nanotechnol 5:591–595

    CAS  PubMed  Google Scholar 

  • Yang X, Sun Q, Raza Asim A, Jiang X, Zhong B, Shahzad M, Zhang F, Han Y, Lu S (2010) Nitric oxide in both bronchoalveolar lavage fluid and serum is associated with pathogenesis and severity of antigen-induced pulmonary inflammation in rats. J Asthma 47(2):135–144

    CAS  PubMed  Google Scholar 

  • Yeh MY, Shih YL, Chung HY, Chou J, Lu HF, Liu CH, Liu JY, Huang WW, Peng SF, Wu LY, Chung JG (2017) Chitosan promotes immune responses, ameliorates glutamic oxaloacetic transaminase and glutamic pyruvic transaminase, but enhances lactate dehydrogenase levels in normal mice in vivo. Mol Med Rep 16:2483–2490

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan JS, Reed A, Che F, Stewart CN (2006) Statistical analysis of real-time PCR data. BMC Bioinform 7:85

    Google Scholar 

  • Zaharoff DA, Rogers CJ, Hance KW, Schlom J, Greiner JW (2007) Chitosan solution enhances both humoral and cell-mediated immune responses to subcutaneous vaccination. Vaccine 25:2085–2094

    CAS  PubMed  Google Scholar 

  • Zhao K, Chen G, Shi XM, Gao TT, Li W, Zhao Y, Zhang FQ, Wu J, Cui X, Wang YF (2012) Preparation and efficacy of a live Newcastle disease virus vaccine encapsulated in chitosan nanoparticles. PLoS One 7(12):e53314

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work supported by the Animal Health Research Institute-Egypt, Holding Company for Biological products, Vaccines and Drugs (VACSERA)-Egypt and the National Research Centre-Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Korany A. Ali.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

The study was approved by the ethics committee of Animal Health Research Institute and the National Research Centre-Egypt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Sissi, A.F., Mohamed, F.H., Danial, N.M. et al. Chitosan and chitosan nanoparticles as adjuvant in local Rift Valley Fever inactivated vaccine. 3 Biotech 10, 88 (2020). https://doi.org/10.1007/s13205-020-2076-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-020-2076-y

Keywords

Navigation