Skip to main content

Advertisement

Log in

Mucuna pruriens in Parkinson’s and in some other diseases: recent advancement and future prospective

  • Review Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Mucuna pruriens (Mp) is an annual and perennial legume which belongs to the family Fabaceae having different types of therapeutic activity. Anti-oxidative, anti-inflammatory, anti-epileptic, anti-microbial, etc. are the example of some most common activities of Mp. It is widely utilized as a potent aphrodisiac. The anti-Parkinsonian activity of Mp was explored since the nineteenth century. The neuroprotective activity of Mp was shown by several researchers. Levodopa (L-DOPA) is the important constituents responsible for the anti-Parkinsonian activity of Mp. Apart from L-DOPA, several other important bioactive components like Ursolic acid (UA) and Betulinic acid (BA) also exhibit a similar neuroprotective activity. Parkinson’s disease (PD) is mainly sporadic. A very small proportion shows the genetic nature of PD. The anti-Parkinsonian activity of Mp was explored in different toxin-induced PD models as like MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), Rotenone, Paraquat, 6-hydroxydopamine (6-OHDA) as suggested by several pieces of literature. Various parts of Mp’s like seed, leaf, and stem exhibit potent neuroprotective attributes. Among different parts, seeds are widely utilized as anti-PD agents because of the higher percentage of L-DOPA. Besides anti-PD activity, Mp’s neuroprotective potential was also explored in the ischemic model of stroke that also shows positive results. Recently, several clinical trials have been performed on the anti-PD activity of Mp on PD patients that show convincing results. Although, a small population-based study needs to be further validated in the broader population. Apart from anti-PD activity, Mp also shows its therapeutic activity in some other diseases like cancer, diabetes, skin infection, anemia, antihypertensive, etc. that are summarized in Table 1. In this review, we have discussed the anti-PD potential of Mp in the sporadic and genetic model along with some clinical trials that have performed on PD patients. Some other activity of Mp is also summarized in this review. There is a strong need to test the efficacy of Mp in some other neurodegenerative diseases along with PD. Following this, this review emphasizes the role of Mp in PD systematically through literature analysis available to date.

Table 1 The generalized activities of Mp in some other diseases published in recent years

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adepoju GKA, Odubena OO (2009) Effect of Mucuna pruriens on some haematological and biochemical parameters. J Med Plant Res 3:073–076

    Google Scholar 

  • Adi YK, Widayanti R, Pangestiningsih TW (2018) n-Propanol extract of boiled and fermented koro benguk (Mucuna pruriens seed) shows a neuroprotective effect in paraquat dichloride-induced Parkinson’s disease rat model. Vet World 11(9):1250–1254

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ameh MP, Mohammed M, Ofemile YP, Mohammed MG, Gabriel A, Isaac AO (2020) Detoxifying action of aqueous extracts of Mucuna pruriens seed and Mimosa pudica root against venoms of Naja nigricollis and Bitis arietans. Recent Pat Biotechnol 14(2):134–144

    CAS  PubMed  Google Scholar 

  • Anjaneyulu JRV, Godbole A (2020) Differential effect of ayurvedic nootropics on Caenorhabditis elegans models of Parkinson’s disease. J Ayurveda Integr Med. https://doi.org/10.1016/j.jaim.2020.07.006

    Article  PubMed  PubMed Central  Google Scholar 

  • Anosike CA, Igboegwu ON, Nwodo OFC (2018) Antioxidant properties and membrane stabilization effects of methanol extract of Mucuna pruriens leaves on normal and sickle erythrocytes. J Tradit Complement Med 9(4):278–284

    PubMed  PubMed Central  Google Scholar 

  • Ashidi JS, Owagboriaye FO, Yaya FB, Payne DE, Lawal OI, Owa SO (2019) Assessment of reproductive function in male albino rat fed dietary meal supplemented with Mucuna pruriens seed powder. Heliyon 5(10):e02716

    PubMed  PubMed Central  Google Scholar 

  • Ball N, Teo WP, Chandra S, Chapman J (2019) Parkinson’s disease and the environment. Front Neurol 10:218

    PubMed  PubMed Central  Google Scholar 

  • Baroli B, Loi E, Solari P, Kasture A, Moi L, Muroni P, Kasture S, Setzu MD, Liscia A, Zavattari P (2019) Evaluation of oxidative stress mechanisms and the effects of phytotherapic extracts on Parkinson’s disease Drosophila PINK1B9 model. FASEB J 33(10):11028–11034

    CAS  PubMed  Google Scholar 

  • Birla H, Keswani C, Rai SN, Singh SS, Zahra W, Dilnashin H, Rathore AS, Singh SP (2019a) Neuroprotective effects of Withania somnifera in BPA induced-cognitive dysfunction and oxidative stress in mice. Behav Brain Funct 15(1):9

    PubMed  PubMed Central  Google Scholar 

  • Birla H, Rai SN, Singh SS, Zahra W, Rawat A, Tiwari N, Singh RK, Pathak A, Singh SP (2019b) Tinospora cordifolia suppresses neuroinflammation in Parkinsonian mouse model. NeuroMol Med 21(1):42–53

    CAS  Google Scholar 

  • Chi H, Tang W, Bai Y (2020) Molecular evidence of impaired iron metabolism and its association with Parkinson’s disease progression. 3 Biotech 10(4):173

    PubMed  PubMed Central  Google Scholar 

  • Cilia R, Laguna J, Cassani E, Cereda E, Pozzi NG, Isaias IU, Contin M, Barichella M, Pezzoli G (2017) Mucuna pruriens in Parkinson disease A double-blind, randomized, controlled, crossover study. Neurology 89(5):432–438

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cilia R, Laguna J, Cassani E, Cereda E, Raspini B, Barichella M, Pezzoli G (2018) Daily intake of Mucuna pruriens in advanced Parkinson’s disease: a 16-week, noninferiority, randomized, crossover, pilot study. Parkinsonism Relat Disord 49:60–66

    PubMed  Google Scholar 

  • Damodaran M, Ramaswamy R (1937) Isolation of L-dopa from the seeds of Mucuna pruriens. Biochem J 31:2149–2451

    CAS  PubMed  PubMed Central  Google Scholar 

  • DeMaagd G, Philip A (2015) Parkinson’s disease and its management: part 1: disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis. Pharm Ther 40(8):504–532

    Google Scholar 

  • Dhanasekaran M, Tharakan B, Manyam BV (2008) Antiparkinson drug—Mucunapruriensshows antioxidant and metal chelating activity. Phytother Res 22:6–11

    CAS  PubMed  Google Scholar 

  • Ferguson CC, Knol LL, Halli-Tierney A, Ellis AC (2019) Dietary supplement use is high among individuals with parkinson disease. South Med J 112(12):621–625

    PubMed  Google Scholar 

  • Fitzgerald E, Murphy S, Martinson HA (2019) Alpha-synuclein pathology and the role of the microbiota in Parkinson’s Disease. Front Neurosci 13:369

    PubMed  PubMed Central  Google Scholar 

  • Fothergill-Misbah N, Maroo H, Cham M, Pezzoli G, Walker R, Cilia R (2020) Could Mucuna pruriens be the answer to Parkinson’s disease management in sub-saharan Africa and other low-income countries worldwide? Parkinsonism Relat Disord 73:3–7

    PubMed  Google Scholar 

  • Goldenberg MM (2008) Medical management of Parkinson’s disease. Pharm Ther 33(10):590–606

    Google Scholar 

  • Im W, Moon J, Kim M (2016) Applications of CRISPR/Cas9 for gene editing in hereditary movement disorders. J Movem Disord 9(3):136–143

    Google Scholar 

  • Johnson SL, Park HY, DaSilva NA, Vattem DA, Ma H, Seeram NP (2018) Levodopa-reduced Mucuna pruriens seed extract shows neuroprotective effects against Parkinson’s Disease in murine microglia and human neuroblastoma cells, Caenorhabditis elegans, and Drosophila melanogaster. Nutrients 10(9):1139

    PubMed Central  Google Scholar 

  • Katzenschlager R, Evans A, Manson A, Patsalos PN, Ratnaraj N, Watt H, Timmermann L, Van der Giessen R, Lees AJ (2004) Mucuna pruriens in Parkinson’s disease: a double blind clinical and pharmacological study. Neurol Neurosurg Psychiatry 75:1672–1677

    CAS  Google Scholar 

  • Kaushik G, Ponnusamy MP, Batra SK (2018) Concise review: current status of three-dimensional organoids as preclinical models. Stem Cells 36(9):1329–1340

    PubMed  PubMed Central  Google Scholar 

  • Lampariello LR, Cortelazzo A, Guerranti R, Sticozzi C, Valacchi G (2012) The magic velvet bean of mucuna pruriens. J Trad Complem Med 2(4):331–339

    Google Scholar 

  • Lee DJ, Dallapiazza RF, De Vloo P, Lozano AM (2018) Current surgical treatments for Parkinson’s disease and potential therapeutic targets. Neural Regener Res 13(8):1342–1345

    Google Scholar 

  • Lieu CA, Kunselman AR, Manyama BV, Venkiteswaran K, Subramanian T (2010) A water extract of Mucuna pruriens provides long-term amelioration of parkinsonism with reduced risk for dyskinesias. Parkinsonism Relat Disord 16(7):458–465

    PubMed  PubMed Central  Google Scholar 

  • Lieu CA, Venkiteswaran K, Gilmour TP, Rao AN, Petticoffer AC, Gilbert EV, Deogaonkar M, Manyam BV, Subramanian T (2012) The antiparkinsonian and antidyskinetic mechanisms of Mucuna pruriens in the MPTP-treated nonhuman primate. Evid Based Complem Altern Med 840247:10

    Google Scholar 

  • Manyam B (1990) Paralysis agitans and levodopa in ‘‘Ayurveda’’: ancient Indian medical treatise. Mov Disord 5:47–48

    CAS  PubMed  Google Scholar 

  • Manyam BV, Sanchez-Ramos JR (1999) Traditional and complementary therapies in Parkinson’s disease. Adv Neurol 80:565–574

    CAS  PubMed  Google Scholar 

  • Manyam BV, Dhanasekaran M, Hare T (2004) Neuroprotective effects of antiparkinson drug Mucunapruriens. Phytother Res 18:706–712

    PubMed  Google Scholar 

  • Mohapatra S, Ganguly P, Singh R, Katiyar CK (2019) Estimation of levodopa in the unani drug Mucuna pruriens Bak and its marketed formulation by high-performance thin-layer chromatographic technique. J AOAC Int. https://doi.org/10.5740/jaoacint.19-0288

    Article  Google Scholar 

  • Nayak VS, Kumar N, D’Souza AS, Nayak SS, Cheruku SP, Pai KSR (2017) The effects of Mucuna pruriens extract on histopathological and biochemical features in the rat model of ischemia. NeuroReport 28(18):1195–1201

    PubMed  Google Scholar 

  • Pathania R, Chawla P, Khan H, Kaushik R, Khan MA (2020) An assessment of potential nutritive and medicinal properties of Mucuna pruriens: a natural food legume. 3 Biotech 10(6):261

    PubMed  PubMed Central  Google Scholar 

  • Patil RR, Rai SN, Jadhav JP, Singh SP (2016) Mucuna sanjappae shows promising anti-Parkinson’s activity by reducing oxidative stress in mptp induced mouse model. EJPMR 3(11):452–463

    Google Scholar 

  • Pinto IR, Chaves HV, Vasconcelos AS, de Sousa FCF, Santi-Gadelha T, de Lacerda JTJG, Ribeiro KA, Freitas RS, Maciel LM, Filho SMP, Viana AFSC, de Almeida Gadelha CA, Filho GC, de Paulo Teixeira Pinto V, Pereira KMA, Rodrigues E, Silva AA, Bezerra MM (2019) Antiulcer and antioxidant activity of a lectin from Mucuna pruriens seeds on ethanol-induced gastropathy: involvement of alpha-2 adrenoceptors and prostaglandins. Curr Pharm Des 25(12):1430–1439

    CAS  PubMed  Google Scholar 

  • Poddighe S, De Rose F, Marotta R, Ruffilli R, Fanti M, Secci PP, Mostallino MC, Setzu MD, Zuncheddu MA, Collu I, Solla P, Marrosu F, Kasture S, Acquas E, Liscia A (2014) Mucuna pruriens (Velvet bean) rescues motor, olfactory, mitochondrial and synaptic impairment in PINK1B9 Drosophila melanogaster genetic model of Parkinson’s disease. PLoS ONE 23:9

    Google Scholar 

  • Prakash J, Chouhan S, Yadav SK, Westfall S, Rai SN, Singh SP (2014) Withania somnifera alleviates parkinsonian phenotypes by inhibiting apoptotic pathways in dopaminergic neurons. Neurochem Res 39:2527–2536

    CAS  PubMed  Google Scholar 

  • Raddera DLM, Groenestege ATT, Boers E, Muilwijk EW, Bloem BR (2019) Mucuna pruriens combined with carbidopa in Parkinson’s disease: a case report. J Parkinsons Dis 9(2):437–439

    Google Scholar 

  • Rai SN, Singh SP (2016) Comparison of the neuroprotective potential of estrogen and levodopa in 1-methyl-4-pheny-l,2, 3,6-tetrahydropyridine (mptp)-induced cognitive deficit in parkinsonian mice model. EJPMR 3(9):317–328

    Google Scholar 

  • Rai SN, Yadav SK, Singh D, Singh SP (2016) Ursolic acid attenuates oxidative stress in nigrostriatal tissue and improves neurobehavioral activity in MPTP- induced Parkinsonian mouse model. J Chem Neuroanat 71:41–49

    CAS  PubMed  Google Scholar 

  • Rai SN, Birla H, Singh SS, Zahra W, Patil RR, Jadhav JP, Gedda MR, Singh SP (2017a) Mucuna pruriens protects against MPTP intoxicated neuroinflammation in Parkinson’s disease through NF-κB/Pakt signaling pathways. Front Aging Neurosci 9:421

    PubMed  PubMed Central  Google Scholar 

  • Rai SN, Birla H, Zahra W, Singh SS, Singh SP (2017b) Immunomodulation of Parkinson’s disease using Mucuna pruriens (Mp). J Chem Neuroanat 85:27–35

    PubMed  Google Scholar 

  • Rai SN, Dilnashin H, Birla H, Singh SS, Zahra W, Rathore AS, Singh BK, Singh SP (2019a) The role of PI3K/Akt and ERK in neurodegenerative disorders. Neurotox Res 35(3):775–795

    CAS  PubMed  Google Scholar 

  • Rai SN, Singh BK, Rathore AS, Zahra W, Keswani C, Birla H, Singh SS, Dilnashin H, Singh SP (2019b) Quality control in huntington’s disease: a therapeutic target. Neurotox Res 36(3):612–626

    CAS  PubMed  Google Scholar 

  • Rai SN, Zahra W, Singh SS, Birla H, Keswani C, Dilnashin H, Rathore AS, Singh R, Singh RK, Singh SP (2019c) Anti-inflammatory activity of ursolic acid in MPTP-induced Parkinsonian mouse model. Neurotox Res 36(3):452–462

    CAS  PubMed  Google Scholar 

  • Randhir R, Kwon YI, Shetty K (2009) Improved health-relevant functionality in dark germinated Mucuna pruriens sprouts by elicitation with peptide and phytochemical elicitors. Biores Technol 100:4507–4514

    CAS  Google Scholar 

  • Rijntjes M (2019) Knowing your beans in Parkinson’s disease: a critical assessment of current knowledge about different beans and their compounds in the treatment of Parkinson’s disease and in animal models. Parkinsons Dis 2019:1349509

    PubMed  PubMed Central  Google Scholar 

  • Saiyad Musthafa M, Asgari SM, Kurian A, Elumalai P, Jawahar Ali AR, Paray BA, Al-Sadoon MK (2018) Protective efficacy of Mucuna pruriens (L.) seed meal enriched diet on growth performance, innate immunity, and disease resistance in Oreochromis mossambicus against Aeromonas hydrophila. Fish Shellfish Immunol 75:374–380

    CAS  PubMed  Google Scholar 

  • Saranya G, Jiby MV, Jayakumar KS, Padmesh Pillai P, Jayabaskaran C (2020) L-DOPA synthesis in Mucuna pruriens (L.) DC. is regulated by polyphenol oxidase and not CYP 450/tyrosine hydroxylase: an analysis of metabolic pathway using biochemical and molecular markers. Phytochemistry 178:112467

    CAS  PubMed  Google Scholar 

  • Seppan P, Muhammed I, Mohanraj KG, Lakshmanan G, Premavathy D, Muthu SJ, Wungmarong Shimray K, Sathyanathan SB (2018) Therapeutic potential of Mucuna pruriens (Linn.) on ageing induced damage in dorsal nerve of the penis and its implication on erectile function: an experimental study using albino rats. Aging Male 15:1–14

    Google Scholar 

  • Shin JW, Lee JM (2017) The prospects of CRISPR-based genome engineering in the treatment of neurodegenerative disorders. Ther Adv Neurol Disord 11:1756285617741837

    PubMed  PubMed Central  Google Scholar 

  • Singh SS, Rai SN, Birla H, Zahra W, Kumar G, Gedda MR, Tiwari N, Patnaik R, Singh RK, Singh SP (2018) Effect of chlorogenic acid supplementation in MPTP-intoxicated mouse. Front Pharmacol 9:757

    PubMed  PubMed Central  Google Scholar 

  • Singh SS, Rai SN, Birla H, Zahra W, Rathore AS, Dilnashin H, Singh R, Singh SP (2020) Neuroprotective effect of chlorogenic acid on mitochondrial dysfunction-mediated apoptotic death of DA neurons in a Parkinsonian mouse model. Oxid Med Cell Longev 27(2020):6571484

    Google Scholar 

  • Sinha S, Sharma S, Vora J, Shah H, Srivastava A, Shrivastava N (2018) Mucuna pruriens (L.) DC chemo sensitize human breast cancer cells via downregulation of prolactin-mediated JAK2/STAT5A signaling. J Ethnopharmacol 217:23–35

    CAS  PubMed  Google Scholar 

  • Solari P, Maccioni R, Marotta R, Catelani T, Debellis D, Baroli B, Peddio S, Muroni P, Kasture S, Solla P, Stoffolano JG Jr, Liscia A (2018) The imbalance of serotonergic circuitry impairing the crop supercontractile muscle activity and the mitochondrial morphology of PD PINK1B9Drosophila melanogaster are rescued by Mucuna pruriens. J Insect Physiol 111:32–40

    CAS  PubMed  Google Scholar 

  • Surathi P, Jhunjhunwala K, Yadav R, Pal PK (2016) Research in Parkinson’s disease in India: a review. Ann Indian Acad Neurol 19(1):9–20

    PubMed  PubMed Central  Google Scholar 

  • Tharakan B, Dhanasekaran M, Mize-Berge J, Manyam BV (2007) Anti-parkinson botanical Mucuna pruriens prevents levodopa induced plasmid and genomic DNA damage. Phytother Res 21:1124–1126

    PubMed  Google Scholar 

  • Ulu R, Gozel N, Tuzcu M, Orhan C, Yiğit İP, Dogukan A, Telceken H, Üçer Ö, Kemeç Z, Kaman D, Juturu V, Sahin K (2018) The effects of Mucuna pruriens on the renal oxidative stress and transcription factors in high-fructose-fed rats. Food Chem Toxicol 118:526–531

    CAS  PubMed  Google Scholar 

  • Yadav SK, Prakash J, Chouhan S, Singh SP (2013) Mucuna pruriens seed extract reduces oxidative stress in nigrostriatal tissue and improves neurobehavioral activity in paraquat-induced Parkinsonian mouse model. Neurochem Int 62:1039–1047

    CAS  PubMed  Google Scholar 

  • Yadav SK, Prakash J, Chouhan S, Westfall S, Verma M, Singh TD, Singh SP (2014) Comparison of the neuroprotective potential of Mucuna pruriens seed extract with estrogen in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice model. Neurochem Int 65:1–13

    CAS  PubMed  Google Scholar 

  • Yadav SK, Rai SN, Singh SP (2016) Mucuna pruriens shows neuroprotective effect by inhibiting apoptotic pathways of dopaminergic neurons in the paraquat mouse model of parkinsonism. EJPMR 3(8):441–451

    Google Scholar 

  • Yadav SK, Rai SN, Singh SP (2017) Mp reduces inducible nitric oxide synthase expression in Parkinsonian mice model. J Chem Neuroanat 80:1–10

    CAS  PubMed  Google Scholar 

  • Yang D, Zhao D, Ali Shah SZ, Wu W, Lai M, Zhang X, Li J, Guan Z, Zhao H, Li W, Gao H, Zhou X, Yang L (2019) The role of the gut microbiota in the pathogenesis of Parkinson’s disease. Front Neurol 10:1155

    PubMed  PubMed Central  Google Scholar 

  • Zahra W, Rai SN, Birla H, Singh SS, Rathore AS, Dilnashin H, Singh R, Keswani C, Singh RK, Singh SP (2020) Neuroprotection of rotenone induced Parkinsonism by Ursolic acid in PD mouse model. CNS Neurol Disord. https://doi.org/10.2174/1871527319666200812224457

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge UGC Dr. D.S. Kothari Postdoctoral scheme for awarding the fellowship to Dr. Sachchida Nand Rai (Ref. No-F.4-2/2006 (BSR)/BL/19-20/0032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachchida Nand Rai.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rai, S.N., Chaturvedi, V.K., Singh, P. et al. Mucuna pruriens in Parkinson’s and in some other diseases: recent advancement and future prospective. 3 Biotech 10, 522 (2020). https://doi.org/10.1007/s13205-020-02532-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-020-02532-7

Keywords

Navigation