Skip to main content
Log in

Evaluation of assembly methods combining long-reads and short-reads to obtain Paenibacillus sp. R4 high-quality complete genome

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

We sequenced the Paenibacillus sp. R4 using Oxford Nanopore Technology (ONT), single molecule real-time (SMRT) technology from Pacific Biosciences (PacBio), and Illumina technologies to investigate the application of nanopore reads in de novo sequencing of bacterial genomes. We compared the differences in both genome sequences between genome assemblies using nanopore and PacBio reads and focused on the difference in the prediction of coding sequences. The results indicated that for more accurate predictions of open reading frames, contigs in the assemblies using only PacBio reads also needed to be corrected using short reads with high-quality bases, and repeat regions in genomes did not affect the increase of mispredicted coding sequences via genome polishing significantly. In assemblies using only nanopore reads, genome polishing was essential, but many repeat regions in genomes might increase the number of mispredicted coding sequences via genome polishing. The hybrid assembly combining the long reads and short reads represents the best result for coding sequence predictions in genome assemblies using nanopore reads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

The raw data have been deposited at the National Center for Biotechnology Information (NCBI) BioProject repository PRJNA564035 (SRX6807868-SRX6807870). This strain is available from the Polar and Alpine Microbial Collection (PAMC) of Korea Polar Research Institute with the accession number PAMC 29622.

References

  • Antipov D, Korobeynikov A, McLean JS, Pevzner PA (2016) HybridSPAdes: an algorithm for hybrid assembly of short and long reads. Bioinformatics 32:1009–1015

    Article  CAS  Google Scholar 

  • Ashton PM et al (2015) MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nat Biotechnol 33:296

    Article  CAS  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  Google Scholar 

  • Broder AZ (1997) On the resemblance and containment of documents. In: Proceedings. Compression and Complexity of SEQUENCES 1997 (Cat. No. 97TB100171). IEEE, pp 21–29

  • Chin C-S et al (2013) Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10:563

    Article  CAS  Google Scholar 

  • Clarke J, Wu H-C, Jayasinghe L, Patel A, Reid S, Bayley H (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4:265

    Article  CAS  Google Scholar 

  • De Maio N et al. (2019) Comparison of long-read sequencing technologies in the hybrid assembly of complex bacterial genomes. BioRxiv:530824

  • Delcher AL, Phillippy A, Carlton J, Salzberg SL (2002) Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res 30:2478–2483

    Article  Google Scholar 

  • Deschamps S et al (2016) Characterization, correction and de novo assembly of an Oxford Nanopore genomic dataset from Agrobacterium tumefaciens. Sci Rep 6:28625

    Article  CAS  Google Scholar 

  • Eccles D, Chandler J, Camberis M, Henrissat B, Koren S, Le Gros G, Ewbank JJ (2018) De novo assembly of the complex genome of Nippostrongylus brasiliensis using MinION long reads. BMC Biol 16:6

    Article  Google Scholar 

  • Eid J et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138

    Article  CAS  Google Scholar 

  • Giordano F et al (2017) De novo yeast genome assemblies from MinION PacBio and MiSeq platforms. Sci Rep 7:3935

    Article  Google Scholar 

  • Goldstein S, Beka L, Graf J, Klassen JL (2019) Evaluation of strategies for the assembly of diverse bacterial genomes using MinION long-read sequencing. BMC Genomics 20:23

    Article  Google Scholar 

  • Hunt M, Kikuchi T, Sanders M, Newbold C, Berriman M, Otto TD (2013) REAPR: a universal tool for genome assembly evaluation. Genome Biol 14:R47

    Article  Google Scholar 

  • Jain M et al (2018) Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat Biotechnol 36:338

    Article  CAS  Google Scholar 

  • Jain M, Olsen HE, Paten B, Akeson M (2016) The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol 17:239

    Article  Google Scholar 

  • Kim H, Park AK, Lee JH, Shin SC, Park H, Kim HW (2018) PsEst3, a new psychrophilic esterase from the Arctic bacterium Paenibacillus sp. R4: crystallization and X-ray crystallographic analysis. Acta Crystallogr F Struct Biol Commun 74:367–372. https://doi.org/10.1107/S2053230X18007525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM (2017) Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27:722–736

    Article  CAS  Google Scholar 

  • Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint arXiv:13033997

  • Li H (2018) Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34:3094–3100

    Article  CAS  Google Scholar 

  • Loman NJ, Quick J, Simpson JT (2015) A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods 12:733

    Article  CAS  Google Scholar 

  • Lu H, Giordano F, Ning Z (2016) Oxford Nanopore MinION sequencing and genome assembly. Genomics Proteomics Bioinformatics 14:265–279

    Article  Google Scholar 

  • Michael TP et al (2018) High contiguity Arabidopsis thaliana genome assembly with a single nanopore flow cell. Nat Commun 9:541

    Article  Google Scholar 

  • Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055

    Article  CAS  Google Scholar 

  • Passera A, Marcolungo L, Casati P, Brasca M, Quaglino F, Cantaloni C, Delledonne M (2018) Hybrid genome assembly and annotation of Paenibacillus pasadenensis strain R16 reveals insights on endophytic life style and antifungal activity. PLoS ONE 13:e0189993

    Article  Google Scholar 

  • Ross MG et al (2013) Characterizing and measuring bias in sequence data. Genome Biol 14:R51

    Article  Google Scholar 

  • Schmidt MH-W et al (2017) De novo assembly of a new Solanum pennellii accession using nanopore sequencing. Plant Cell 29:2336–2348

    Article  CAS  Google Scholar 

  • seqtk. https://github.com/lh3/seqtk Accessed 26 Aug 2019

  • Shin SC et al (2019) Nanopore sequencing reads improve assembly and gene annotation of the Parochlus steinenii genome. Sci Rep 9:5095

    Article  Google Scholar 

  • Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31(19):3210–3212

    Article  Google Scholar 

  • SMARTdenovo. https://github.com/ruanjue/smartdenovo. Accessed 19 Nov 2018

  • Tanizawa Y, Fujisawa T, Nakamura Y (2017) DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication. Bioinformatics 34:1037–1039

    Article  Google Scholar 

  • Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28:33–36

    Article  CAS  Google Scholar 

  • Walker BJ et al (2014) Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9:e112963

    Article  Google Scholar 

  • Wick RR, Judd LM, Gorrie CL, Holt KE (2017) Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13:e1005595

    Article  Google Scholar 

Download references

Funding

This research was supported by a National Research Foundation of Korea Grant from the Korean Government (MSIT; the Ministry of Science and ICT) (NRF-2017M1A5A1013568) (KOPRI-PN20082) (Title: application study on the Arctic cold-active enzyme degrading organic carbon compounds).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: HWK, JHL, SCS; methodology: HJK, SCS; software: SCS; formal analysis: WC, SCS; investigation: WC; resources: SCS; data curation: SCS; writing—original draft preparation: All authors; writing—review and editing: All authors; visualization: SCS, HWK; supervision: SCS, HWK; project administration: SCS, HWK; funding: HWK.

Corresponding authors

Correspondence to Seung Chul Shin or Han-Woo Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial and non-financial interests.

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, S.C., Choi, W., Lee, J. et al. Evaluation of assembly methods combining long-reads and short-reads to obtain Paenibacillus sp. R4 high-quality complete genome. 3 Biotech 10, 480 (2020). https://doi.org/10.1007/s13205-020-02474-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-020-02474-0

Keywords

Navigation