Skip to main content
Log in

A novel, simple, and stable mesoporous silica nanoparticle-based gene transformation approach in Solanum lycopersicum

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

In this study, a novel and stable gene transformation system was developed under control of Maize Proteinase Inhibitor (MPI) as an inducible promoter using the Mesoporous Silica Nanoparticles (MSNs). The functionalized MSNs with a proper particle size were synthesized and attached to a recombinant construct (pDNA) containing cryIAb gene under the control of MPI promoter (pPZP122:MPI:cryIAb:MSN [pDNA: MSN]) following transformation of tomato plants through injection of the pDNA: MSN complex into tomato red fruit at early ripening stage and then, putative transgenic seeds were collected. As an initial selection, gentamicin-resistant seedlings of T1 (24.24%) and T2 (61.37%) plants were identified. The transgene integration and expression were confirmed through the PCR, RT-PCR, and western blot approaches in the selected seedlings. PCR analysis showed that transformation frequency was equal to 10.71% in T1 plants. Semi-quantitative RT-PCR analysis confirmed the transcript expression of cryIAb in all the T1 and T2 PCR-positive plants. Western blot analysis confirmed the existence of CryIAb protein in the leaves of T2 putative transgenic plants. Accordingly, the results demonstrated that the transgene has more likely integrated into the tomato genome through homologous recombination. Bioassay was carried out for further assessment of the plant responses to Tuta absoluta resulting in an enhanced tolerance of the plant. In conclusion, the MSN-mediated stable transformation system under the MPI as an inducible promoter can be used as a suitable alternative for conventional genetic transformation methods due to its biodegradability, biocompatibility, cost and time-effectiveness, and positive effect on the plant defense against pathogens and pests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Angenon G, Dillen W, Van Montagu M (1994) Antibiotic resistance markers for plant transformation. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual. Springer, Dordrecht, pp 125–137

    Google Scholar 

  • Auffan M, Rose J, Bottero J-Y, Lowry GV, Jolivet J-P, Wiesner MR (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4(10):634

    CAS  PubMed  Google Scholar 

  • Baniameri V, Cheraghian A (2011) The current status of Tuta absoluta in Iran. In: International symposium on management of Tuta absoluta (Tomato Leafminer), Agadir, Moracco, pp 16–18

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    CAS  PubMed  Google Scholar 

  • Camargo RA, Barbosa GO, Possignolo IP, Peres LE, Lam E, Lima JE, Figueira A, Marques-Souza H (2016) RNA interference as a gene silencing tool to control Tuta absoluta in tomato (Solanum lycopersicum). PeerJ 4:e2673

    PubMed  PubMed Central  Google Scholar 

  • Campos MR, Rodrigues ARS, Silva WM, Silva TBM, Silva VRF, Guedes RNC, Siqueira HAA (2014) Spinosad and the tomato borer Tuta absoluta: a bioinsecticide, an invasive pest threat, and high insecticide resistance. PLoS ONE 9(8):e103235

    PubMed  PubMed Central  Google Scholar 

  • Chakraborty S, Newton A (2011) Climate change, plant diseases and food security: an overview. Plant Pathol 60:2–14

    Google Scholar 

  • Chang F-P, Kuang L-Y, Huang C-A, Jane W-N, Hung Y, Yue-ie CH, Mou C-Y (2013) A simple plant gene delivery system using mesoporous silica nanoparticles as carriers. J Mater Chem B 1(39):5279–5287

    CAS  PubMed  Google Scholar 

  • Cifuentes D, Chynoweth R, Bielza P (2011) Genetic study of Mediterranean and South American populations of tomato leafminer Tuta absoluta (Povolny, 1994) (Lepidoptera: Gelechiidae) using ribosomal and mitochondrial markers. Pest Manag Sci 67(9):1155–1162

    CAS  PubMed  Google Scholar 

  • De A, Bose R, Kumar A, Mozumdar S (2014) Targeted delivery of pesticides using biodegradable polymeric nanoparticles. Springer, Berlin

    Google Scholar 

  • Du J, Tang J, Xu S, Ge J, Dong Y, Li H, Jin M (2020) ZnO nanoparticles: recent advances in ecotoxicity and risk assessment. Drug Chem Toxicol 43(3):322–333

    CAS  PubMed  Google Scholar 

  • Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23

    Google Scholar 

  • Eggenberger K, Frey N, Zienicke B, Siebenbrock J, Schunck T, Fischer R, Bräse S, Birtalan E, Nann T, Nick P (2010) Use of nanoparticles to study and manipulate plant cells. Adv Eng Mater 12(9):B406–B412

    Google Scholar 

  • Fauteux F, Rémus-Borel W, Menzies JG, Bélanger RR (2005) Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol Lett 249(1):1–6

    CAS  PubMed  Google Scholar 

  • Fu Y-Q, Li L-H, Wang P-W, Qu J, Fu Y-P, Wang H, Sun J-R (2012a) Delivering DNA into plant cell by gene carriers of ZnS nanoparticles. Chem Res Chin Univ 28:672–676

    CAS  Google Scholar 

  • Fu Y-Q, Li L-H, Wang P-W, Qu J, Fu Y-P, Wang H, Sun J-R (2012b) Delivering DNA into plant cell by gene carriers of ZnS nanoparticles. Chem Res Chin Univ 28(4):672–676

    CAS  Google Scholar 

  • Fu Y, Li L, Wang H, Jiang Y, Liu H, Cui X, Wang P, Lü C (2015) Silica nanoparticles-mediated stable genetic transformation in Nicotiana tabacum. Chem Res Chin Univ 31(6):976–981

    CAS  Google Scholar 

  • Galdino TVdS, Picanço MC, Morais EGFd, Silva NR, Silva GARd, Lopes MC (2011) Bioassay method for toxicity studies of insecticide formulations to Tuta absoluta (Meyrick, 1917). Ciência e Agrotecnologia 35(5):869–877

    CAS  Google Scholar 

  • Ghareyazie B, Alinia F, Menguito CA, Rubia LG, de Palma JM, Liwanag EA, Cohen MB, Khush GS, Bennett J (1997) Enhanced resistance to two stem borers in an aromatic rice containing a synthetic cryIA (b) gene. Mol Breed 3(5):401–414

    CAS  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29(6):792–803

    CAS  PubMed  Google Scholar 

  • Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatilepPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25(6):989–994

    CAS  PubMed  Google Scholar 

  • Hajiahmadi Z, Shirzadian-Khorramabad R, Kazemzad M, Sohani MM (2018) Expression of cryIAb driven by a wound inducible promoter (MPI) in tomato to enhance resistance to Tuta absoluta. J Plant Genet Res 4(2):1–16

    Google Scholar 

  • Hajiahmadi Z, Shirzadian-Khorramabad R, Kazemzad M, Sohani MM (2019) Enhancement of tomato resistance to Tuta absoluta using a new efficient mesoporous silica nanoparticle-mediated plant transient gene expression approach. Sci Hortic 243:367–375

    CAS  Google Scholar 

  • Hamza R, Pérez-Hedo M, Urbaneja A, Rambla JL, Granell A, Gaddour K, Beltrán JP, Cañas LA (2018) Expression of two barley proteinase inhibitors in tomato promotes endogenous defensive response and enhances resistance to Tuta absoluta. BMC Plant Biol 18(1):24

    PubMed  PubMed Central  Google Scholar 

  • Hao Y, Yang X, Shi Y, Song S, Xing J, Marowitch J, Chen J, Chen J (2013) Magnetic gold nanoparticles as a vehicle for fluorescein isothiocyanate and DNA delivery into plant cells. Botany 91(7):457–466

    CAS  Google Scholar 

  • Hayford MB, Medford JI, Hoffman NL, Rogers SG, Klee HJ (1988) Development of a plant transformation selection system based on expression of genes encoding gentamicin acetyltransferases. Plant Physiol 86(4):1216–1222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain HI, Yi Z, Rookes JE, Kong LX, Cahill DM (2013) Mesoporous silica nanoparticles as a biomolecule delivery vehicle in plants. J Nanopart Res 15(6):1676

    Google Scholar 

  • Inbar O, Liefshitz B, Bitan G, Kupiec M (2000) The relationship between homology length and crossing over during the repair of a broken chromosome. J Biol Chem 275(40):30833–30838

    CAS  PubMed  Google Scholar 

  • Koziel MG, Beland GL, Bowman C, Carozzi NB, Crenshaw R, Crossland L, Dawson J, Desai N, Hill M, Kadwell S (1993) Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Nat Biotechnol 11(2):194

    CAS  Google Scholar 

  • Ma J, Yamaji N (2008) Functions and transport of silicon in plants. Cell Mol Life Sci 65(19):3049–3057

    CAS  PubMed  Google Scholar 

  • Moreno SC, Silvério FO, Picanço MC, Alvarenga ES, Pereira RR, Santana Júnior PA, Silva GA (2017) New pyrethroids for use against Tuta absoluta (Lepidoptera: Gelechiidae): their toxicity and control speed. J Insect Sci 15(5):1–6

    Google Scholar 

  • Motyka O, Štrbová K, Olšovská E, Seidlerová J (2019) Influence of nano-ZnO exposure to plants on l-ascorbic acid levels: indication of nanoparticle-induced oxidative stress. J Nanosci Nanotechnol 19(5):3019–3023

    CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8(19):4321–4326

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nair R, Poulose AC, Nagaoka Y, Yoshida Y, Maekawa T, Kumar DS (2011) Uptake of FITC labeled silica nanoparticles and quantum dots by rice seedlings: effects on seed germination and their potential as biolabels for plants. J Fluoresc 21(6):2057

    CAS  PubMed  Google Scholar 

  • Napierska D, Thomassen LC, Rabolli V, Lison D, Gonzalez L, Kirsch-Volders M, Martens JA, Hoet PH (2009) Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small 5(7):846–853

    CAS  PubMed  Google Scholar 

  • Pasupathy K, Lin S, Hu Q, Luo H, Ke PC (2008) Direct plant gene delivery with a poly (amidoamine) dendrimer. Biotechnol J Healthc Nutr Technol 3(8):1078–1082

    CAS  Google Scholar 

  • Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751

    CAS  PubMed  Google Scholar 

  • Pereira RR, Picanço MC, Santana PA Jr, Moreira SS, Guedes RN, Corrêa AS (2014) Insecticide toxicity and walking response of three pirate bug predators of the tomato leaf miner Tuta absoluta. Agric For Entomol 16(3):293–301

    Google Scholar 

  • Perez C, Sanchez A, Putnam D, Ting D, Langer R, Alonso M (2001) Poly (lactic acid)-poly (ethylene glycol) nanoparticles as new carriers for the delivery of plasmid DNA. J Control Release 75(1–2):211–224

    CAS  PubMed  Google Scholar 

  • Primrose SB, Twyman R (2013) Principles of gene manipulation and genomics. Wiley, New York

    Google Scholar 

  • Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94(2):287–293

    CAS  PubMed  Google Scholar 

  • Rasband WS (1997) IImageJ. US National Institutes of Health, Bethesda

    Google Scholar 

  • Selale H, Dağlı F, Mutlu N, Doğanlar S, Frary A (2017) Cry1Ac-mediated resistance to tomato leaf miner (Tuta absoluta) in tomato. Plant Cell Tissue Organ Cult (PCTOC) 131(1):65–73

    CAS  Google Scholar 

  • Shahbaz M, Nouri-Ganbalani G, Naseri B (2019) Comparative damage and digestive enzyme activity of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) on 12 tomato cultivars. Entomol Res 49(9):401–408

    CAS  Google Scholar 

  • Slomberg DL, Schoenfisch MH (2012) Silica nanoparticle phytotoxicity to Arabidopsis thaliana. Environ Sci Technol 46(18):10247–10254

    CAS  PubMed  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418(6898):671

    CAS  PubMed  Google Scholar 

  • Tonnang HE, Mohamed SF, Khamis F, Ekesi S (2015) Identification and risk assessment for worldwide invasion and spread of Tuta absoluta with a focus on Sub-Saharan Africa: implications for phytosanitary measures and management. PLoS ONE 10(8):e0135283

    PubMed  PubMed Central  Google Scholar 

  • Torney F, Trewyn BG, Lin VS-Y, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2(5):295

    CAS  PubMed  Google Scholar 

  • Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B (2012) Xylem-and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46(8):4434–4441

    CAS  PubMed  Google Scholar 

  • Weeks DP, Spalding MH, Yang B (2016) Use of designer nucleases for targeted gene and genome editing in plants. Plant Biotechnol J 14(2):483–495

    CAS  PubMed  Google Scholar 

  • Yasmeen A, Mirza B, Inayatullah S, Safdar N, Jamil M, Ali S, Choudhry MF (2009) In planta transformation of tomato. Plant Mol Biol Rep 27(1):20–28

    CAS  Google Scholar 

  • Zhang S, Lian Y, Liu Y, Wang X, Liu Y, Wang G (2013) Characterization of a maize Wip1 promoter in transgenic plants. Int J Mol Sci 14(12):23872–23892

    PubMed  PubMed Central  Google Scholar 

  • Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104(1):83–91

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Reza Sayyad from University of Tehran and Dr. Ghadamyari from University of Guilan for their scientific and technical advices, and express our gratitude to Zahra Shirzadian for grammatically revising our manuscript.

Funding

This work was partially funded by University of Guilan and also in part by Iran National Science Foundation (Grant no: 93033715).

Author information

Authors and Affiliations

Authors

Contributions

ZH did the research experiments and data analysis, RSH conducted and supervised the research project. MK supervised the nanoparticles synthesis and assessments. MMS and JKH worked in order as advisor of gene transformation and insect bioassay experiments, respectively. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Reza Shirzadian-Khorramabad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 725 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajiahmadi, Z., Shirzadian-Khorramabad, R., Kazemzad, M. et al. A novel, simple, and stable mesoporous silica nanoparticle-based gene transformation approach in Solanum lycopersicum. 3 Biotech 10, 370 (2020). https://doi.org/10.1007/s13205-020-02359-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-020-02359-2

Keywords

Navigation