Skip to main content
Log in

Age-related changes in the gut microbiota and the core gut microbiome of healthy Thai humans

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The gut microbial diversity of Thai people was investigated between two large cohorts, adult and elderly subjects, from the middle region of Thailand; the cohorts were divided into different age groups of healthy adult (73) and elderly subjects (47). The diversities of the groups were characterized using a pyrosequencing technique with primers targeting the V6–V8 region of the 16S rRNA gene, and a significant decrease in the Firmicutes and Bacteroidetes ratio from 7.3 to 4.5 was observed with increased age. The microbiota of the adult and elderly groups had a significantly higher abundance of the phylum Actinobacteria, including the three species Bifidobacterium adolescentis, Bifidobacterium longum and Bifidobacterium pseudocatenulatum, and the phylum Bacteroidetes containing the four species Bacteroides uniformis, Bacteroides ovatus, Bacteroides caccae and Bacteroides thetaiotaomicron. Firmicutes showed no significant differences between the two groups. Eleven species belonging to Firmicutes, Bacteroidetes and Proteobacteria were shared by at least 90% of all subjects and defined as core gut microbiota of healthy Thai, among which a high abundance of Escherichia coli was particularly characterized in Thai elderly individuals. Multiple linear regression analysis of age, gender, BMI and diet consumption frequency showed the correlation of age with Bacteroides and Bifidobacterium. Rice consumption frequency showed a significant positive correlation with Bacteroides, while no correlation was found for other factors. Taken together, in the gut of Thai adults, Bifidobacterium decreased and Bacteroides increased with age, while rice consumption increased the abundance of Bacteroides. These link of age and food, especially rice carbohydrate, to gut microbiota and health could be ultimately proposed as the Thai feature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig.3
Fig.4

Similar content being viewed by others

References

  • Alpert C, Scheel J, Engst W, Loh G, Blaut M (2009) Adaptation of protein expression by Escherichia coli in the gastrointestinal tract of gnotobiotic mice. Environ Microbiol 11(4):751–761

    Article  CAS  PubMed  Google Scholar 

  • Bartosch S, Fite A, Macfarlane GT, McMurdo ME (2004) Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl Environ Microbiol 70(6):3575–3581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker C, Neurath MF, Wirtz S (2015) The intestinal microbiota in inflammatory bowel disease. ILAR J 56(2):192–204

    Article  CAS  PubMed  Google Scholar 

  • Bentley R, Meganathan R (1982) Biosynthesis of vitamin K (menaquinone) in bacteria. Microbiol Rev 46(3):241–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biagi E, Candela M, Fairweather-Tait S, Franceschi C, Brigidi P (2012) Ageing of the human metaorganism: the microbial counterpart. Age 34(1):247–267

    Article  PubMed  Google Scholar 

  • Biagi E, Nylund L, Candela M, Ostan R, Bucci L, Pini E, Nikkïla J, Monti D, Satokari R, Franceschi C, Brigidi P, De Vos W (2010) Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS ONE 5(5):e10667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brüssow H (2013) Microbiota and healthy ageing: observational and nutritional intervention studies. Microb Biotechnol 6(4):326–334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chao A (1984) Nonparametric estimation of the number of classes in a population. Scand J Stat 11(4):265–270

    Google Scholar 

  • Claesson MJ, Cusack S, O’Sullivan O, Greene-Diniz R, Weerd H, Flannery E (2011) Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci USA 108(Suppl 1):4586–4591

    Article  CAS  PubMed  Google Scholar 

  • Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488:178–184

    Article  CAS  PubMed  Google Scholar 

  • Clemente Jose C, Ursell Luke K, Parfrey Laura W, Knight R (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148(6):1258–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conlon AM, Bird RA (2015) The impact of diet and lifestyle on gut microbiota and human health. Nutrients 7(1):17–44

    Article  CAS  Google Scholar 

  • Darfeuille-Michaud A, Boudeau J, Bulois P, Neut C, Glasser A-L, Barnich N, Bringer M-A, Swidsinski A, Beaugerie L, Colombel J-F (2004) High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology 127(2):412–421

    Article  PubMed  Google Scholar 

  • De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 107(33):14691–14696

    Article  PubMed  PubMed Central  Google Scholar 

  • De Palma G, Nadal I, Collado MC, Sanz Y (2009) Effects of a gluten-free diet on gut microbiota and immune function in healthy adult human subjects. Br J Nutr 102(8):1154–1160

    Article  PubMed  CAS  Google Scholar 

  • Duncan SH, Hold GL, Barcenilla A, Stewart CS, Flint HJ (2002) Roseburia intestinalis sp. nov., a novel saccharolytic, butyrate-producing bacterium from human faeces. Int J Syst Evol Microbiol 52(5):1615–1620

    CAS  PubMed  Google Scholar 

  • Favier CF, Vaughan EE, De Vos WM, Akkermans ADL (2002) Molecular monitoring of succession of bacterial communities in human neonates. Appl Environ Microbiol 68(1):219–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gavini F, Cayuela C, Antoine J-M, Lecoq C, Lefebvre B, Membré J-M, Neut C (2001) Differences in the distribution of bifidobacterial and enterobacterial species in human faecal microflora of three different (children, adults, elderly) age groups. Microb Ecol Health Dis 13(1):40–45

    Google Scholar 

  • Geirnaert A, Steyaert A, Eeckhaut V, Debruyne B, Arends JBA, Van Immerseel F, Boon N, Van de Wiele T (2014) Butyricicoccus pullicaecorum, a butyrate producer with probiotic potential, is intrinsically tolerant to stomach and small intestine conditions. Anaerobe 30:70–74

    Article  CAS  PubMed  Google Scholar 

  • Hayashi H, Sakamoto M, Kitahara M, Benno Y (2003) Molecular analysis of fecal microbiota in elderly individuals using 16S rDNA library and T-RFLP. Microbiol Immunol 47(8):557–570

    Article  CAS  PubMed  Google Scholar 

  • He F, Ouwehand AC, Isolauri E, Hosoda M, Benno Y, Salminen S (2001) Differences in composition and mucosal adhesion of bifidobacteria isolated from healthy adults and healthy seniors. Curr Microbiol 43(5):351–354

    Article  CAS  PubMed  Google Scholar 

  • Hopkins MJ, Macfarlane GT (2002) Changes in predominant bacterial populations in human faeces with age and with Clostridium difficile infection. J Med Microbiol 51(5):448–454

    Article  CAS  PubMed  Google Scholar 

  • Hosseini E, Grootaert C, Verstraete W, Van de Wiele T (2011) Propionate as a health-promoting microbial metabolite in the human gut. Nutr Rev 69(5):245–258

    Article  PubMed  Google Scholar 

  • Huse SM, Ye Y, Zhou Y, Fodor AA (2012) A core human microbiome as viewed through 16S rRNA sequence clusters. PLoS ONE 7(6):e34242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadner RJ (1978) Repression of synthesis of the vitamin B12 receptor in Escherichia coli. J Bacteriol 136(3):1050–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, Angenent LT, Ley RE (2011) Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci USA 108(Suppl 1):4578–4585

    Article  CAS  PubMed  Google Scholar 

  • La-ongkham O, Nakphaichit M, Leelavatcharamas V, Keawsompong S, Nitisinprasert S (2015) Distinct gut microbiota of healthy children from two different geographic regions of Thailand. Arch Microbiol 197(4):561–573

    Article  CAS  PubMed  Google Scholar 

  • Léké A, Romond M, Mullié C (2007) Insights in the human bifidobacterial flora through culture-dependent and independent techniques. Commun Curr Res Educ Top Trends Appl Microbiol 2:758–765

    Google Scholar 

  • Li M, Wang B, Zhang M, Rantalainen M, Wang S, Zhou H, Zhang Y, Shen J, Pang X, Zhang M, Wei H, Chen Y, Lu H, Zuo J, Su M, Qiu Y, Jia W, Xiao C, Smith LM, Yang S, Holmes E, Tang H, Zhao G, Nicholson JK, Li L, Zhao L (2008) Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci USA 105(6):2117–2122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindstedt B-A, Finton MD, Porcellato D, Brandal LT (2018) High frequency of hybrid Escherichia coli strains with combined intestinal pathogenic Escherichia coli (IPEC) and extraintestinal pathogenic Escherichia coli (ExPEC) virulence factors isolated from human faecal samples. BMC Infect Dis 18(1):544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopetuso LR, Scaldaferri F, Petito V, Gasbarrini A (2013) Commensal Clostridia: leading players in the maintenance of gut homeostasis. Gut Pathog 5(1):23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mäkivuokko H, Tiihonen K, Tynkkynen S, Paulin L, Rautonen N (2009) The effect of age and non-steroidal anti-inflammatory drugs on human intestinal microbiota composition. Br J Nutr 103(2):227–234

    Article  PubMed  CAS  Google Scholar 

  • Mariat D, Firmesse O, Levenez F, Guimarăes V, Sokol H, Doré J (2009) The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol 9(1):123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez I, Muller CE, Walter J (2013) Long-Term Temporal analysis of the human fecal microbiota revealed a stable core of dominant bacterial species. PLoS ONE 8(7):e69621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miquel S, Martín R, Bridonneau C, Robert V, Sokol H, Bermúdez-Humarán LG, Thomas M, Langella P (2014) Ecology and metabolism of the beneficial intestinal commensal bacterium Faecalibacterium prausnitzii. Gut Microbes 5(2):146–151

    Article  PubMed  PubMed Central  Google Scholar 

  • Mueller S, Saunier K, Hanisch C, Norin E, Alm L, Midtvedt T (2006) Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl Environ Microbiol 72(2):1027–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakayama J (2010) Pyrosequence-based 16S rRNA profiling of gastro-intestinal microbiota. Biosci Microflora 29(2):83–96

    Article  CAS  Google Scholar 

  • Nakayama J, Jiang J, Watanabe K, Chen K, Ninxin H, Matsuda K, Kurakawa T, Tsuji H, Sonomoto K, Lee Y-K (2013) Up to species-level community analysis of human gut microbiota by 16S rRNA amplicon pyrosequencing. Biosci Microbiota Food Health 32(2):69–76

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakayama J, Watanabe K, Jiang J, Matsuda K, Chao SH, Haryono P (2015) Diversity in gut bacterial community of school-age children in Asia. Sci Rep 5:8397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nam YD, Jung MJ, Roh SW, Kim MS, Bae JW (2011) Comparative analysis of Korean human gut microbiota by barcoded pyrosequencing. PLoS ONE 6(7):e22109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Odamaki T, Kato K, Sugahara H, Hashikura N, Takahashi S, Xiao J-z, Abe F, Osawa R (2016) Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol 16(1):90

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ottman N, Smidt H, de Vos WM, Belzer C (2012) The function of our microbiota: who is out there and what do they do? Front Cell Infect Microbiol 2:104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ouwehand AC, Isolauri E, Kirjavainen PV, Salminen SJ (1999) Adhesion of four Bifidobacterium strains to human intestinal mucus from subjects in different age groups. FEMS Microbiol Lett 172(1):61–64

    Article  CAS  PubMed  Google Scholar 

  • Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO (2007) Development of the human infant intestinal microbiota. PLoS Biol 5(7):e177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park S-K, Kim M-S, Roh SW, Bae J-W (2012) Blautia stercoris sp. Nov., isolated from human faeces. Int J Syst Evol Microbiol 62(4):776–779

    Article  CAS  PubMed  Google Scholar 

  • Power SE, O'Toole PW, Stanton C, Ross RP, Fitzgerald GF (2013) Intestinal microbiota, diet and health. Br J Nutr 111(3):387–402

    Article  PubMed  CAS  Google Scholar 

  • Pryde SE, Duncan SH, Hold GL, Stewart CS, Flint HJ (2002) The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett 217(2):133–139

    Article  CAS  PubMed  Google Scholar 

  • Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto J-M, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Dore J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Bork P, Ehrlich SD, Wang J (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruengsomwong S, Korenori Y, Sakamoto N, Wannissorn B, Nakayama J, Nitisinprasert S (2014) Senior Thai fecal microbiota comparison between vegetarians and non-vegetarians using PCR-DGGE and real-time PCR. J Microbiol Biotechnol 24(8):1026–1033

    Article  PubMed  Google Scholar 

  • Ruengsomwong S, La-Ongkham O, Jiang J, Wannissorn B, Nakayama J, Nitisinprasert S (2016) Microbial community of healthy Thai vegetarians and non-vegetarians, their core gut microbiota and pathogens risk. J Microbiol Biotechnol 26(10):1723–1735

    Article  CAS  PubMed  Google Scholar 

  • Sekirov I, Russell SL, Antunes LCM, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90(3):859

    Article  CAS  PubMed  Google Scholar 

  • Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG, Gratadoux J-J, Blugeon S, Bridonneau C, Furet J-P, Corthier G, Grangette C, Vasquez N, Pochart P, Trugnan G, Thomas G, Blottière HM, Doré J, Marteau P, Seksik P, Langella P (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA 105(43):16731–16736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tap J, Mondot S, Levenez F, Pelletier E, Caron C, Furet J-P, Ugarte E, Muñoz-Tamayo R, Paslier DLE, Nalin R, Dore J, Leclerc M (2009) Towards the human intestinal microbiota phylogenetic core. Environ Microbiol 11(10):2574–2584

    Article  PubMed  Google Scholar 

  • Taras D, Simmering R, Collins MD, Lawson PA, Blaut M (2002) Reclassification of Eubacterium formicigenerans Holdeman and Moore 1974 as Dorea formicigenerans gen. nov., comb. nov., and description of Dorea longicatena sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 52(2):423–428

  • Tiihonen K, Ouwehand AC, Rautonen N (2010) Human intestinal microbiota and healthy ageing. Ageing Res Rev 9(2):107–116

    Article  PubMed  Google Scholar 

  • Van Tongeren SP, Slaets JPJ, Harmsen HJM, Welling GW (2005) Fecal microbiota composition and frailty. Appl Environ Microbiol 71(10):6438–6442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vrieze A, Holleman F, Zoetendal EG, de Vos WM, Hoekstra JBL, Nieuwdorp M (2010) The environment within: how gut microbiota may influence metabolism and body composition. Diabetologia 53(4):606–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiskopf D, Weinberger B, Grubeck-Loebenstein B (2009) The aging of the immune system. Transpl Int 22(11):1041–1050

    Article  CAS  PubMed  Google Scholar 

  • Wexler HM (2007) Bacteroides: the good, the bad, and the Nitty–Gritty. Clin Microbiol Rev 20(4):593–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51(2):221–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodmansey EJ, McMurdo MET, Macfarlane GT, Macfarlane S (2004) Comparison of compositions and metabolic activities of fecal microbiotas in young adults and in antibiotic-treated and non-antibiotic-treated elderly subjects. Appl Environ Microbiol 70(10):6113–6122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y-Y, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, Sinha R, Gilroy E, Gupta K, Baldassano R, Nessel L, Li H, Bushman FD, Lewis JD (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334(6052):105–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Jobin C (2014) Microbial imbalance and intestinal pathologies: connections and contributions. Dis Model Mech 7(10):1131–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M (2012) Human gut microbiome viewed across age and geography. Nature 486(7402):222–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Guo Z, Xue Z, Sun Z, Zhang M, Wang L, Wang G, Wang F, Xu J, Cao H, Xu H, Lv Q, Zhong Z, Chen Y, Qimuge S, Menghe B, Zheng Y, Zhao L, Chen W, Zhang H (2015) A phylo-functional core of gut microbiota in healthy young Chinese cohorts across lifestyles, geography and ethnicities. ISME J 9(9):1979–1990

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Qiao X, Zhu J, Zhang X, Jiang J, Hao Y, Ren F (2011) Correlations of fecal bacterial communities with age and living region for the elderly living in Bama, Guangxi. China J Microbiol 49(2):186–192

    Article  PubMed  Google Scholar 

  • Zwielehner J, Liszt K, Handschur M, Lassl C, Lapin A, Haslberger AG (2009) Combined PCR-DGGE fingerprinting and quantitative-PCR indicates shifts in fecal population sizes and diversity of Bacteroides, bifidobacteria and Clostridium cluster IV in institutionalized elderly. Exp Gerontol 44(6–7):440–446

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to express their thanks to all the volunteers who were willing to provide fecal samples for this research. This work was supported by the Royal Golden Jubilee PhD. Scholarship Grant (RGJ-PhD) of the Thailand Research Fund (TRF) and Kasetsart University (PHD/0318/2552), partially supported by the Center for Advanced Studies for Agriculture and Food, Institute for Advanced Studies, Kasetsart University Under the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission, Ministry of Education, Thailand (CASAF PD011), by Grants-in-Aid for Scientific Research (B) No. 25304006 from the Japan Society for the Promotion of Science (JSPS) (to Jiro Nakayama) and performed under the Core-to-Core Program, which was financially supported by Japan Society for the Promotion of Science (JSPS), National Research Council of Thailand (NRCT), Vietnam Ministry of Science and Technology (MOST), the National University of Laos, Beuth University of Applied Sciences and Brawijaya University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunee Nitisinprasert.

Ethics declarations

Conflict of interest

The authors declare that have no conflict of interest in the publication.

Ethical statements

This study was approved by the Institute for the Development of Human Research Protection (IHRP) Department of Medical Sciences, Ministry of Public Health, Thailand with ethical approval number IHRP 311, and written informed consent was obtained from all participants.

Additional information

Accession numbers Sequences obtained in this present study have been deposited in the DDBJ Sequence Read Archive (DRA) (BioProject accession number PRJDB5860, PSUB007333 and DRA accession number DRA005889).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 227 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

La-ongkham, O., Nakphaichit, M., Nakayama, J. et al. Age-related changes in the gut microbiota and the core gut microbiome of healthy Thai humans. 3 Biotech 10, 276 (2020). https://doi.org/10.1007/s13205-020-02265-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-020-02265-7

Keywords

Navigation