Skip to main content
Log in

Impact of immobilization technology in industrial and pharmaceutical applications

  • Review Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The current demands of the world’s biotechnological industries are enhancement in enzyme productivity and development of novel techniques for increasing their shelf life. Compared to free enzymes in solution, immobilized enzymes are more robust and more resistant to environmental changes. More importantly, the heterogeneity of the immobilized enzyme systems allows an easy recovery of both enzymes and products, multiple reuse of enzymes, continuous operation of enzymatic processes, rapid termination of reactions, and greater variety of bioreactor designs. This review summarizes immobilization definition, different immobilization methods, advantages and disadvantages of each method. In addition, it covers some food industries, protein purification, human nutrition, biodiesel production, and textile industry. In these industries, the use of enzymes has become an inevitable processing strategy when a perfect end product is desired. It also can be used in many other important industries including health care and pharmaceuticals applications. One of the best uses of enzymes in the modern life is their application in diagnose and treatment of many disease especially when used in drug delivery system or when used in nanoform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdel Hameed M, Ebrahim O (2007) Review: biotechnological potential uses of immobilized algae. Int J Agri Biol 9:183

    CAS  Google Scholar 

  • Abol Fotouh DM, Bayoumi RA, Hassan MA (2016) Production of thermoalkaliphilic lipase from geobacillus thermoleovorans DA2 and application in leather industry. Enzym Res. https://doi.org/10.1155/2016/9034364

    Google Scholar 

  • Akhtar S, Khan AA, Husain Q (2005) Potential of immobilized bitter gourd (Momordica charantia) peroxidases in the decolorization and removal of textile dyes from polluted wastewater and dyeing effluent. Chemosph 60:291–301

    CAS  Google Scholar 

  • Aldobaev VN, Prezent MA, Zavarzin IV (2018) Shortened single-walled carbon nanotubes modification as design of nano-structural drug delivery system for pharmaceutical substances. Russ Chem Bull 67(11):2098–2102

    CAS  Google Scholar 

  • Ali KA, Hassan ME, Elnashar MM (2017) Development of functionalized carrageenan, chitosan and alginate as polymeric chelating ligands for water softening. Int J Environ Sci Technol 14:2009–2014

    CAS  Google Scholar 

  • Almadiy AA, Nenaah GE (2018) Ecofriendly synthesis of silver nanoparticles using potato steroidal alkaloids and their activity against phytopathogenic fungi. Braz Arch Biol Technol 2018:61

    Google Scholar 

  • Amal MH, Amira AG, Mohamed EH, Naziha MH, Mona AE (2016) Covalent immobilization of Enterococcus faecalis Esawy dextransucrase and dextran synthesis. Int J Biol Macromol 82:905–912

    Google Scholar 

  • Arora AK, Saini SS, De D, Handa S (2016) Reticulate pigmentation associated with vitamin B12 deficiency. Indian Dermatol Online J 7(3):215–217

    PubMed  PubMed Central  Google Scholar 

  • Asamudo NU, Daba AS, Ezeronye OU (2005) Bioremediation of textile effluent using Phanerochaete chrysosporium. Afr J Biotechnol 4:1548–1553

    CAS  Google Scholar 

  • Bhushan I, Alabbas A, Kuberan B, Gupta RB, Desai UR (2017) Immobilization alters heparin cleaving properties of heparinase I. Glycobiology 27(11):994–998

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brena BM, Batista-Viera F (2006) Methods in biotechnology: immobilization of enzymes and cells. In: Guisan JM (ed) Immobilization of Enzymes and Cells, 2nd edn. Humana Press Inc, New Jersey pp 123–124

    Google Scholar 

  • Brodeliu P (1985) In enzymes and immobilized cells in biotechnology. In: Laskin AI (ed) Enzymes and immobilized cells in biotechnology. Benjamin Cummings, London, pp 109–148

  • Brodelius P, Mosbach K (1987) Immobilization techniques for cells/organelles. In: Mosbach K (ed) Methods in enzymology. Academic Press, London, pp 173–454

    Google Scholar 

  • Buchholz K, Klein J (1987) Characterization of immobilized biocatalysts. In: Mosbach K (ed) Methods in enzymology. Academic Press, London, p 330

    Google Scholar 

  • Cai CG, Lou BG, Zheng XD (2008) Keratinase production and keratin degradation by a mutant strain of Bacillus subtilis. J Zhejiang Univ Sci B 9(1):60–67

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang TMS (2007) 50th anniversary of artificial cells: their role in biotechnology, nanomedicine, regenerative medicine, blood substitutes, bioencapsulation, cell/stem cell therapy and nanorobotics. Artif Cells Blood Substit Immobil Biotechnol 35(6):545–554

    PubMed  PubMed Central  Google Scholar 

  • Chen J, Wang Q, Hua Z, Du G (2007) Research and application of biotechnology in textile industries in China. Enzym Microb Technol 40:1651–1655

    CAS  Google Scholar 

  • Chiou SH, Wu WT (2004) Immobilization of Candida rugosa lipase on chitosan with activation of the hydroxyl groups. Biomaterials 25:197–204

    CAS  PubMed  Google Scholar 

  • Ciaron OF (2003) Enzyme stabilization–recent experimental progress. Enzym Microb Technol 33:137–149

    Google Scholar 

  • Cipolatti EP, Silva MJ, Klein M, Feddern V, Feltes MMC et al (2014) Current status and trends in enzymatic nanoimmobilization. J Mol Catal B Enzym 99:56–67

    CAS  Google Scholar 

  • Cooper GM (2000) The chemistry of cells: the central role of enzymes as biological catalysts. In: Cooper GM (ed) The cell: a molecular approach, 2nd edn. Sinauer Associates, Sunderland (MA), pp 145–146

    Google Scholar 

  • Costa SA, Azevedo HS, Reis RL (2005) Enzyme immobilization in biodegradable polymers for biomedical applications. In: Reis RL, Roman JS (eds) Biodegradable systems in tissue engineering and regenerative medicine. CRC Press LLC, London, pp 109–112

    Google Scholar 

  • David PB, John AG (2004) Characterization of a digestive carboxypeptidase from the insect pest corn earworm (Helicoverpa armigera) with novel specificity towards C-terminal glutamate residues. Eur J Biochem 271(10):2000–2011

    Google Scholar 

  • Denkova Z, Krastanov A, Murgov I (2004) Immobilized lactic acid bacteria for application as dairy starters and probiotic preparations. J Gen Appl Microbiol 50:107–114

    CAS  PubMed  Google Scholar 

  • Driscoll KF (1979) Methods in enzymology, techniques of enzyme entrapment in gels. Acad N Y 12:169–183

    Google Scholar 

  • Edalli VA, Mulla SI, Eqani SAMAS et al (2016) Evaluation of p-cresol degradation with polyphenol oxidase (PPO) immobilized in various matrices. 3 Biotech 6:229

    PubMed  PubMed Central  Google Scholar 

  • Elnashar MMM, Hassan ME (2014) Novel epoxy activated hydrogels for solving lactose intolerance. Biomed Res Int 2014:817985

    PubMed  PubMed Central  Google Scholar 

  • Eman AK, Walaa AA, Shireen AS, Mohamed EH, Amany LK, Mona AE (2017) Production, immobilization and thermodynamic studies of free and immobilized Aspergillus awamori amylase. Int J Biol Macromol 102:694–703

    Google Scholar 

  • Erickson JW, Cerione RA (2010) Glutaminase: a hot spot for regulation of cancer cell metabolism. Oncotarget 1(8):734–740

    PubMed  PubMed Central  Google Scholar 

  • Ernesto RK, Tânia RP, Fernanda CH, Jorge BA, Demétrio R, Robson G, Vanete T (2015) Development and evaluation of an indirect ELISA: serological survey to detect specific antibodies to bovine herpesvirus 4. Braz Arch Biol Technol 58(5):725–731

    Google Scholar 

  • Esmail ME, Mohamed AH, Tarek HT (2016) Production and application of extracellular laccase produced by Fusarium oxysporum EMT. Int J Agri Bio 18:939–947

    Google Scholar 

  • Everse ET (1981) Immoilization of streptokinase. US Patent 4,305,926

  • Faraji AH, Wipf P (2009) Nanoparticles in cellular drug delivery. Bioorg Med Chem 17:2950–2962

    CAS  PubMed  Google Scholar 

  • Farre M, Kuster M, Brix R, Rubio F, Alda MJLd, Barcelo D (2007) Comparative study of an estradiol enzyme-linked immunosorbent assay kit, liquid chromatography-tandem mass spectrometry, and ultra performance liquid chromatography-quadrupole time of flight mass spectrometry for part-per-trillion analysis of estrogens in water samples. J Chromatog A 1160:166–175

    CAS  Google Scholar 

  • Filip J, Andicsová-Eckstein A, Vikartovská A, Tkac J (2017) Immobilization of bilirubin oxidase on graphene oxide flakes with different negative charge density for oxygen reduction. The effect of GO charge density on enzyme coverage, electron transfer rate and current density. Biosens Bioelectron 89(Pt 1):384–389

    CAS  PubMed  Google Scholar 

  • Flickinger MC, Drew SW (1999) Fermentation, biocatalysis and bioseparation. In: Flickinger MC (ed) Encyclopedia of bioprocess technology, vol 1, 1st edn. Wiley, New York

    Google Scholar 

  • Fu C, Liu T, Li L, Liu H, Chen D, Tang F (2013) The absorption, distribution, excretion and toxicity of mesoporous silica nanoparticles in mice following different exposure routes. Biomaterials 34(10):2565–2575

    CAS  PubMed  Google Scholar 

  • Fujiwara R, Yokoi T, Nakajima M (2016) Structure and protein-protein interactions of human UDP-glucuronosyltransferases. Front Pharmacol 7:388

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92:405

    CAS  PubMed  Google Scholar 

  • Gao XJ, Fan XJ, Chen XP et al (2018) Immobilized β-lactamase on Fe3O4 magnetic nanoparticles for degradation of β-lactam antibiotics in wastewater. Int J Environ Sci Technol 15:2203

    CAS  Google Scholar 

  • Garman SC (2007) Structure-function relationships in alpha-galactosidase A. Acta Paediatr 96(455):6–16

    PubMed  PubMed Central  Google Scholar 

  • Ghada EAA, Abeer AAA, Abeer NS, Mohamed EH, Magdy ME (2016) Covalent immobilization of microbial naringinase using novel thermally stable biopolymer for hydrolysis of naringin. 3 Biotech 6:14

    Google Scholar 

  • Grobillot A, Boadi DK, Poncelot D, Govardhan C (1994) Crosslinking of enzymes for improved stability and performance. Rev Biotechnol 14:75–107

    Google Scholar 

  • Gupta MN, Kaloti M, Kapoor M, Solanki K (2011) Nanomaterials as matrices for enzyme immobilization. Artif Cells Blood Substit Immobil Biotechnol 39:98–109

    CAS  PubMed  Google Scholar 

  • Guy Helman BS, Ileana Pacheco-Colón BS, Andrea LG (2014) The urea cycle disorders. Semin Neurol 34(3):341–349

    PubMed  Google Scholar 

  • Hassan MA, Haroun BM, Amara AA, Serour EA (2013) Production and characterization of keratinolytic protease from new wool degrading bacillus species isolated from Egyptian ecosystem. Biomed Res Int. https://doi.org/10.1155/2013/175012

    Google Scholar 

  • Hassan ME, Tamer TM, Omer AM (2016) Methods of enzyme immobilization. Int J Curr Pharm Rev Res 7(6):385–392

    Google Scholar 

  • Hassan M, Ran X, Yuan Y, Xiaoning L, Dou D (2019) Biotransformation of ginsenoside using covalently immobilized snailase enzyme onto activated carrageenan gel beads. Bull Mater Sci 42:29

    Google Scholar 

  • Hermanson G, Mallia A, Smith P (1992). Immobilized affinity ligand techniques. Academic Press Incorporation, San Diego

  • Hussein AMS, Lotfy SN, Kamil MM, Hassan ME (2016) Effect of microencapsulation on chemical composition and antioxidant activity of cumin and fennel essential oils. Res J Pharm Biol Chem Sci 7(3):1565–1574

    CAS  Google Scholar 

  • Jakub Z, Anne SM, Teofil J, Manuel P (2018) A general overview of support materials for enzyme immobilization: characteristics, properties, practical utility. Catalysts 8(3):92

    Google Scholar 

  • Jegannathan KR, Abang S, Poncelet D, Chan ES, Ravindra P (2008) Production of biodiesel using immobilized lipase a critical review. Crit Rev Biotechnol 28:253–264

    CAS  PubMed  Google Scholar 

  • Jegannathan KR, Jun-Yee L, Chan ES, Ravindra P (2010) Production of biodiesel from palm oil using liquid core lipase encapsulated in k-carrageenan. Fuel 89:2272–2277

    CAS  Google Scholar 

  • Junyu L, Yu X, Xiangyu W, Lixun H, Yu C, Chongyun B (2019) Glucose-sensitive delivery of metronidazole by using a photo-crosslinked chitosan hydrogel film to inhibit Porphyromonas gingivalis proliferation. Int J Biol Macromol 122:19–28

    Google Scholar 

  • Kanalas JJ, Spector EB, Cederbaum SD (1982) Hollow-fiber reactors containing mammalian arginase: an approach to enzyme replacement therapy. Biochem Med 27:46–55

    CAS  PubMed  Google Scholar 

  • Kierstan MPJ, Coughlan MP (1991) Principles and applications in protein immobilization. In: Taylor RF (ed) Immobilization of protiens by noncovalent procedures: principles and applications, in Protein Immobilization. Marcel Dekker, New York, pp 13–71

  • Kristal JC, Carlos AÁ, Emyr P, José AM, Ángela Á (2018) Fish trypsins: potential applications in biomedicine and prospects for production. 3 Biotech 8:186

    Google Scholar 

  • Kuan-Jung C, Cheng-Hao W, Chen-Wen L, Cheng-Kang L (2018) Recombinant fructosyl peptide oxidase preparation and its immobilization on polydopamine coating for colorimetric determination of HbA1c. Int J Biol Macromol 120:325–331

    Google Scholar 

  • Lahtela JT, Gachalyi B, Eksymä S, Hämäläinen A, Sotaniemi EA (1986) The effect of liver microsomal enzyme inducing and inhibiting drugs on insulin mediated glucose metabolism in man. Br J Clin Pharmacol 21(1):19–26

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CH, Lin TS, Mou CY (2009) Mesoporous materials for encapsulating enzymes. NANO 4:165–179

    CAS  Google Scholar 

  • Li S, Hu J, Liu B (2004) Use of chemically modified PMMA microspheres for enzyme immobilization. Biosystems 77:25–32

    CAS  PubMed  Google Scholar 

  • Lizano C, Sanz S, Luque J, Pinilla M (1998) In vitro study of alcohol dehydrogenase and acetaldehyde dehydrogenase encapsulated into human erythrocytes by an electroporation procedure. Biochim Biophys Acta 1425:328–336

    CAS  PubMed  Google Scholar 

  • Magdy ME, Ghada EA, Mohamed EH, Mohamed SM, Bakry MH, Ahmed IE (2014) Optimal immobilization of β-galactosidase onto κ-carrageenan gel beads using response surface methodology and its applications. Sci World J 2014:571682

    Google Scholar 

  • Makler MT, Piper RC, Milhous WK (1998) Lactate dehydrogenase and the diagnosis of malaria. Parasitol Today 14:376–377

    CAS  PubMed  Google Scholar 

  • Marcela PM, Hideko Y, Angela RA, Henrique CT (2008) Hydrolysis of whey lactose by immobilized β-galactosidase. Braz Arch Biol Technol 51(6):1233–1240

    Google Scholar 

  • Maruti SS, Chang JL, Prunty JA, Bigler J, Schwarz Y, Li SS, Lampe JW (2008) Serum beta-glucuronidase activity in response to fruit and vegetable supplementation: a controlled feeding study. Cancer Epidemiol Biomark Prev 17(7):1808–1812

    CAS  Google Scholar 

  • Maryam M, Reza RM, Marjan G, Hamed H (2019) Inulinase immobilized gold-magnetic nanoparticles as a magnetically recyclable biocatalyst for facial and efficient inulin biotransformation to high fructose syrup. Int J Biol Macromol 123:846–855

    Google Scholar 

  • Masi C, Chandramohan C, Ahmed MF (2017) Immobilization of the magnetic nanoparticles with alkaline protease enzyme produced by Enterococcus hirae and Pseudomonas aeruginosa isolated from dairy effluents. Braz Arch Biol Technol 60:e17160572. https://doi.org/10.1590/1678-4324-2017160572

  • Maslova OV, Senko OV, Efremenko EN (2018) Aspartic and glutamic acids polymers: preparation and applications in medicinal chemistry and pharmaceutics. Russ Chem Bull 67(4):614–623

    CAS  Google Scholar 

  • Matto M, Husain Q (2009) Decolorization of textile effluent by bitter gourd peroxidase immobilized on concanavalin a layered calcium alginate–starch beads. J Hazard Mater 164:1540–1546

    CAS  PubMed  Google Scholar 

  • Michael DK, Robert L (1986) Immobilized enzymes in clinical medicine: an emerging approach to new drug therapies. TIBTECH 4:179–186

    Google Scholar 

  • Migneault I, Dartiquenave C, Bertrand MJ, Waldron KC (2004) Glutaraldehyde: behaviour in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques 37(5):790–802

    CAS  PubMed  Google Scholar 

  • Mohy Eldin MS, Hassan EA, Elaassar MR (2005) β-Galactosidase covalent immobilization on the surface of alginate beads and its application in lactose hydrolysis. Dtsch Lebensm-Rundsch 6:255–259

    Google Scholar 

  • Mohy Eldin MS, El Enshasy HA, Hassan ME, Haroun B, Hassan EA (2012) Covalent immobilization of penicillin G acylase onto chemically activated surface of poly(vinyl chloride) membranes for 6-penicillic acid production from penicillin hydrolysis process I. Optimization of surface modification and its characterization. J Appl Polym Sci 125:3820–3828

    CAS  Google Scholar 

  • Mona AE, Amira AG, Mohamed MIH, Mohamed EH, Naziha MH, Amal MH (2016) Enzymatic synthesis using immobilized Enterococcus faecalis Esawy dextransucrase and some applied studies. Int J Biol Macromol 92:56–62

    Google Scholar 

  • Montaser AS, Abdel-Mohsen AM, Ramadan MA, Sleem AA, Sahffie NM, Jancar J, Hebeisha A (2016) Preparation and characterization of alginate/silver/nicotinamide nanocomposites for treating diabetic wounds. Int J Biol Macromol 92:739–747

    CAS  PubMed  Google Scholar 

  • Naderi Peikam E, Jalali M (2018) Application of three nanoparticles (Al2O3, SiO2 and TiO2) for metal-contaminated soil remediation (measuring and modeling). Int J Environ Sci Technol. https://doi.org/10.1007/s13762-018-2134-8

    Article  Google Scholar 

  • Neda HM, Sadegh S, Jamshid R, Ashkan HM, Hamid T, Massoud S (2019) Preparation of a highly stable drug carrier by efficient immobilization of human serum albumin (HSA) on drug-loaded magnetic iron oxide nanoparticles. Int J Biol Macromol 125:931–940

    Google Scholar 

  • Nedovic V, Leskosek-Cukalovic I, Vunjak-G N (2003) Immobilized cell technology (ict) in beer fermentation- a possibility for environmentally sustainable and cost effective process. University of Belgrade. www.rcub.bg.ac.yu

  • Ogaki M, Sonomoto K, Nakajima H, Tanaka A (1986) Continuous production of oxytetracycline by immobilized growing Streptomyces rimosus cells. Appl Microbiol Biotechnol 24:6

    CAS  Google Scholar 

  • Osma JF, Toca-Herrera JL, Rodríguez-Couto S (2010) Uses of laccases in the food industry. Enzym Res. https://doi.org/10.4061/2010/918761

    Google Scholar 

  • Porath J, Axen R (1976) Immobilization techniques, immobilization of enzymes to agar, agarose, and sephadex supports. Acad N Y 3:19–45

    Google Scholar 

  • Purnachandra RM, Saritha KV (2015) Bio-catalysis of mango industrial waste by newly isolated Fusarium sp. (PSTF1) for pectinase production. 3 Biotech 5(6):893–900

    Google Scholar 

  • Rajendra S, Manoj K, Anshumali M, Praveen KM (2016) Microbial enzymes: industrial progress in 21st century. 3 Biotech 6:174

    Google Scholar 

  • Ren G, Xu X, Liu Q et al (2006) Electrospun poly(vinyl alcohol)/glucose oxidase biocomposite membranes for biosensor applications. React Funct Polym 66:1559–1564

    CAS  Google Scholar 

  • Richards NG, Kilberg MS (2006) Asparagine synthetase chemotherapy. Annu Rev Biochem 75:629–654

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saad MA, Mathai T, Kranthi KR, Sujata GS, Amit A (2018) Chitosan as biomaterial in drug delivery and tissue engineering. Int J Biol Macromol 110:97–109

    Google Scholar 

  • Senatore F, Bernath F, Meisner K (1986) Clinical study of urokinasebound fibrocollagenous tubes. J Biomed Mater Res 20:177–188

    CAS  PubMed  Google Scholar 

  • Shareef K (2009) Sorbents for contaminents uptake from aqueous solutions. Part 1 heavy metals. World J Agricul Sci 5:819

    CAS  Google Scholar 

  • Sheldon RA (2007) Cross-linked enzyme aggregates (CLEAs): stable and recyclable biocatalysts. Biochem Soc 35(6):15831587

    Google Scholar 

  • Shin-ichiro S, Yuji K, Kira A (1998) Immobilization of glucose oxidase on poly-(llysine)-modified polucarbonate membrane. Biotechnol Appl Biochem 27:245–248

    Google Scholar 

  • Shivani J, Bhagat R, Sunita R, Rohini D (2019) New glucose oxidase-immobilized stimuli-responsive dextran nanoparticles for insulin delivery. Int J Biol Macromol 123:968–978

    Google Scholar 

  • Shweta R, Parul S, Pritam V, Vishnu A (2014) Nanoparticle-based drug delivery systems: promising approaches against infections. Braz Arch Biol Technol 57(2):209–222

    Google Scholar 

  • Silva MCC, Santana LA, Silva-Lucca RA, Lima ALR, Ferreira JG, Paiva PMG, Coelho LCBB, Oliva MLV, Zingali RB, Correia MTS (2011) Immobilized Cratylia mollis lectin: an affinity matrix to purify a soybean (Glycine max) seed protein with in vitro platelet antiaggregation and anticoagulant activities. Process Biochem 46(1):74–80

    CAS  Google Scholar 

  • Srere PA, Uyeda K (1976) Immobilization techniques, functional groups on enzymes suitable for binding to matrices. Acad N Y 2:11–19

    Google Scholar 

  • Sugahara VH, Varéa GS (2014) Immobilization of Beauveria bassiana lipase on silica gel by physical adsorption. Braz Arch Biol Technol 57(6):842–850

    CAS  Google Scholar 

  • Tian X, Anming W, Lifeng H, Haifeng L, Zhenming C, Qiuyan W, Xiaopu Y (2009) Recent advance in the support and technology used in enzyme immobilization. Afr J Biotechnol 8(19):4724–4733

    Google Scholar 

  • Tischer W, Wedekind F (1992) Immobilized enzyme: methods and applications. Biocatalysis 200:95–126

    Google Scholar 

  • Tosa T, Mori T, Fuse N, Chibata I (1966) Studies on continuous enzyme reactions. I. Screening of carriers for preparation of water-insoluble aminoacylase. Enzymologia 31:214–224

    CAS  PubMed  Google Scholar 

  • Wahba MI, Hassan ME (2015) Novel grafted agar disks for the covalent immobilization of β-D-galactosidase. Biopolymers 103(12):675–684

    CAS  PubMed  Google Scholar 

  • Wahba MI, Hassan ME (2017) Agar-carrageenan hydrogel blend as a carrier for the covalent immobilization of β-D-galactosidase. Macromol Res 25(9):913–923

    CAS  Google Scholar 

  • Walaa AA, Eman AK, Mohamed EH, Amany LK, Mona AE, Ghada EAA (2018) Optimization of pectinase immobilization on grafted alginate-agar gel beads by 24 full factorial CCD and thermodynamic profiling for evaluating of operational covalent immobilization. Int J Biol Macromol 113:159–170

    Google Scholar 

  • Wang L, Wei L, Chen Y, Jiang R (2010) Specific and reversible immobilization of NADH oxidase on functionalized carbon nanotubes. J Biotechnol 150:57–63

    PubMed  Google Scholar 

  • Wong AHK, Mine Y (2004) Novel fibrinolytic enzyme in fermented shrimp paste, a traditional Asian fermented seasoning. J Agric Food Chem 52:980–986

    CAS  PubMed  Google Scholar 

  • Woodward J (1985) Immobilized enzymes: adsorption and covalent coupling. In: Woodward J (ed) Immobilized cells and enzymes a practical approach. IRL, Oxford, pp 1–3

    Google Scholar 

  • Zhang X, Liu CJ (2015) Multifaceted regulations of gateway enzyme phenylalanine ammonia-lyase in the biosynthesis of phenylpropanoids. Mol Plant 8:17–27

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of Shenyang Major S&T Achievements Transformation Program (Z18-5-019) and Distinguished Professor Program of Liaoning province (Key technology research and new product creation of potato main food manufacturing).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohamed E. Hassan or Zhigang Xiao.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, M.E., Yang, Q., Xiao, Z. et al. Impact of immobilization technology in industrial and pharmaceutical applications. 3 Biotech 9, 440 (2019). https://doi.org/10.1007/s13205-019-1969-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-019-1969-0

Keywords

Navigation