Skip to main content
Log in

miRNomes involved in imparting thermotolerance to crop plants

  • Review Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Thermal stress is one of the challenges to crop plants that negatively impacts crop yield. To overcome this ever-growing problem, utilization of regulatory mechanisms, especially microRNAs (miRNAs), that provide efficient and precise regulation in a targeted manner have been found to play determining roles. Besides their roles in plant growth and development, many recent studies have shown differential regulation of several miRNAs during abiotic stresses including heat stress (HS). Thus, understanding the underlying mechanism of miRNA-mediated gene expression during HS will enable researchers to exploit this regulatory mechanism to address HS responses. This review focuses on the miRNAs and regulatory networks that were involved in physiological, metabolic and morphological adaptations during HS in plant, specifically in crops. Illustrated examples including, the miR156-SPL, miR169-NF-YA5, miR395-APS/AST, miR396-WRKY, etc., have been discussed in specific relation to the crop plants. Further, we have also discussed the available plant miRNA databases and bioinformatics tools useful for miRNA identification and study of their regulatory role in response to HS. Finally, we have briefly discussed the future prospects about the miRNA-related mechanisms of HS for improving thermotolerance in crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adai A (2005) Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res 15:78–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akhtar MM, Micolucci L, Islam MS et al (2016) Bioinformatic tools for microRNA dissection. Nucleic Acids Res 44:24–44

    Article  CAS  PubMed  Google Scholar 

  • Alptekin B, Langridge P, Budak H (2017) Abiotic stress miRNomes in the Triticeae. Funct Integr Genomics 17:145–170

    Article  CAS  PubMed  Google Scholar 

  • An J, Lai J, Sajjanhar A et al (2014) miRPlant: an integrated tool for identification of plant miRNA from RNA sequencing data. BMC Bioinform 15:275

    Article  CAS  Google Scholar 

  • Asseng S, Ewert F, Martre P et al (2015) Rising temperatures reduce global wheat production. Nat Clim Change 5:143–147

    Article  Google Scholar 

  • Ballén-Taborda C, Plata G, Ayling S et al (2013) Identification of Cassava MicroRNAs under abiotic stress. Int J Genom 2013:1–10

    Article  CAS  Google Scholar 

  • Baras AS, Mitchell CJ, Myers JR et al (2015) miRge—a multiplexed method of processing small RNA-Seq data to determine MicroRNA entropy. PLoS One 10:e0143066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barciszewska-Pacak M, Milanowska K, Knop K et al (2015) Arabidopsis microRNA expression regulation in a wide range of abiotic stress responses. Front Plant Sci 6:1–14

    Article  Google Scholar 

  • Bhardwaj AR, Joshi G, Pandey R et al (2014) A genome-wide perspective of miRNAome in response to high temperature, salinity and drought stresses in Brassica juncea (Czern) L. PLoS One 9:e92456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bilichak A, Ilnytskyy Y, Woycicki R et al (2015) The elucidation of stress memory inheritance in Brassica rapa plants. Front Plant Sci 6:5

    PubMed  PubMed Central  Google Scholar 

  • Bonnet E, He Y, Billiau K, Van de Peer Y (2010) TAPIR, a web server for the prediction of plant microRNA targets, including target mimics. Bioinformatics 26:1566–1568

    Article  CAS  PubMed  Google Scholar 

  • Chae H, Rhee S, Nephew KP, Kim S (2015) BioVLAB-MMIA-NGS: microRNA–mRNA integrated analysis using high-throughput sequencing data. Bioinformatics 31:265–267

    Article  CAS  PubMed  Google Scholar 

  • Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Zhang Z, Liu D et al (2010) SQUAMOSA promoter-binding protein-like transcription factors: star players for plant growth and development. J Integr Plant Biol 52:946–951

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Ren Y, Zhang Y et al (2012) Genome-wide identification and expression analysis of heat-responsive and novel microRNAs in Populus tomentosa. Gene 504:160–165

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Zhu J, Zhou T, Zhu J-K (2007) Small RNAs: big role in abiotic stress tolerance of plants. In: Jenks MA, Hasegawa PM, Jain SM (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer Netherlands, Dordrecht, pp 223–260

    Chapter  Google Scholar 

  • Chiou T-J (2006) Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell 18:412–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi M, Davidson VL (2011) Cupredoxins—a study of how proteins may evolve to use metals for bioenergetic processes. Metallomics 3:140

    Article  CAS  PubMed  Google Scholar 

  • Chou C-H, Chang N-W, Shrestha S et al (2016) miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res 44:D239–D247

    Article  CAS  PubMed  Google Scholar 

  • Chou C-H, Shrestha S, Yang C-D et al (2018) miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res 46:D296–D302

    Article  CAS  PubMed  Google Scholar 

  • Cui L-G, Shan J-X, Shi M et al (2014) The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants. Plant J 80:1108–1117

    Article  CAS  PubMed  Google Scholar 

  • Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39:W155–W159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Wit M, Lorrain S, Fankhauser C (2014) Auxin-mediated plant architectural changes in response to shade and high temperature. Physiol Plant 151:13–24

    Article  CAS  PubMed  Google Scholar 

  • Debernardi JM, Rodriguez RE, Mecchia MA, Palatnik JF (2012) Functional specialization of the plant miR396 regulatory network through distinct microRNA–target interactions. PLOS Genet 8:e1002419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debernardi JM, Lin H, Chuck G et al (2017) microRNA172 plays a crucial role in wheat spike morphogenesis and grain threshability. Development 144:1966–1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebrahimi Khaksefidi R, Mirlohi S, Khalaji F et al (2015) Differential expression of seven conserved microRNAs in response to abiotic stress and their regulatory network in Helianthus annuus. Front Plant Sci 6:741

    Article  PubMed  PubMed Central  Google Scholar 

  • Endo Y, Iwakawa H, Tomari Y (2013) Arabidopsis ARGONAUTE7 selects miR390 through multiple checkpoints during RISC assembly. EMBO Rep 14:652–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evers M, Huttner M, Dueck A et al (2015) miRA: adaptable novel miRNA identification in plants using small RNA sequencing data. BMC Bioinform 16:370

    Article  Google Scholar 

  • Fahlgren N, Hill ST, Carrington JC, Carbonell A (2016) P-SAMS: a web site for plant artificial microRNA and synthetic trans-acting small interfering RNA design. Bioinformatics 32:157–158

    CAS  PubMed  Google Scholar 

  • Fang Y, Xie K, Xiong L (2014) Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice. J Exp Bot 65:2119–2135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferdous J, Hussain SS, Shi BJ (2015) Role of microRNAs in plant drought tolerance. Plant Biotechnol J 13:293–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franco-Zorrilla JM, Valli A, Todesco M et al (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39:1033–1037

    Article  CAS  PubMed  Google Scholar 

  • Fu D, Ma B, Mason AS et al (2013) MicroRNA-based molecular markers: a novel PCR-based genotyping technique in Brassica species. Plant Breed 132:375–381

    Article  CAS  Google Scholar 

  • Gahlaut V, Jaiswal V, Kumar A, Gupta PK (2016) Transcription factors involved in drought tolerance and their possible role in developing drought tolerant cultivars with emphasis on wheat (Triticum aestivum L.). Theor Appl Genet 129:2019–2042

    Article  CAS  PubMed  Google Scholar 

  • Gao P, Bai X, Yang L et al (2011) osa-MIR393: a salinity- and alkaline stress-related microRNA gene. Mol Biol Rep 38:237–242

    Article  CAS  PubMed  Google Scholar 

  • Gao N, Qiang XM, Zhai BN et al (2015) Transgenic tomato overexpressing ath-miR399d improves growth under abiotic stress conditions. Russ J Plant Physiol 62:360–366

    Article  CAS  Google Scholar 

  • Gao W, Long L, Tian X et al (2017) Genome editing in cotton with the CRISPR/Cas9 System. Front Plant Sci 8:1364

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia D (2008) A miRacle in plant development: role of microRNAs in cell differentiation and patterning. Semin Cell Dev Biol 19:586–595

    Article  CAS  PubMed  Google Scholar 

  • Giacomelli JI, Weigel D, Chan RL, Manavella PA (2012) Role of recently evolved miRNA regulation of sunflower HaWRKY6 in response to temperature damage. New Phytol 195:766–773

    Article  CAS  PubMed  Google Scholar 

  • Giurato G, De Filippo MR, Rinaldi A et al (2013) iMir: an integrated pipeline for high-throughput analysis of small non-coding RNA data obtained by small RNA-SEq. BMC Bioinform 14:362

    Article  CAS  Google Scholar 

  • Gomes C, Cho J-H, Hood L et al (2013) A review of computational tools in microRNA discovery. Front Genet 4:81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goswami S, Kumar RR, Rai RD (2014) Heat-responsive microRNAs regulate the transcription factors and heat shock proteins in modulating thermo-stability of starch biosynthesis enzymes in wheat (Triticum aestivum L.) under the heat stress. Aust J Crop Sci 8:697–705

    CAS  Google Scholar 

  • Guan Q, Lu X, Zeng H et al (2013) Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis. Plant J 74:840–851

    Article  CAS  PubMed  Google Scholar 

  • Gupta OP, Meena NL, Sharma I, Sharma P (2014) Differential regulation of microRNAs in response to osmotic, salt and cold stresses in wheat. Mol Biol Rep 41:4623–4629

    Article  CAS  PubMed  Google Scholar 

  • Gurjar AKS, Panwar AS, Gupta R, Mantri SS (2016) PmiRExAt: plant miRNA expression atlas database and web applications. Database 2016:baw060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hackenberg M, Gustafson P, Langridge P, Shi B-J (2015) Differential expression of microRNAs and other small RNAs in barley between water and drought conditions. Plant Biotechnol J 13:2–13

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM et al (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–9684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hivrale V, Zheng Y, Puli COR et al (2016) Characterization of drought- and heat-responsive microRNAs in switchgrass. Plant Sci 242:214–223

    Article  CAS  PubMed  Google Scholar 

  • Hong Y, Jackson S (2015) Floral induction and flower formation-the role and potential applications of miRNAs. Plant Biotechnol J 13:282–292

    Article  CAS  PubMed  Google Scholar 

  • Huang B, Xu C (2008) Identification and characterization of proteins associated with plant tolerance to heat stress. J Integr Plant Biol 50:1230–1237

    Article  CAS  PubMed  Google Scholar 

  • Huijser P, Schmid M (2011) The control of developmental phase transitions in plants. Development 138:4117–4129

    Article  CAS  PubMed  Google Scholar 

  • Jagadeeswaran G, Zheng Y, Sumathipala N et al (2010) Deep sequencing of small RNA libraries reveals dynamic regulation of conserved and novel microRNAs and microRNA-stars during silkworm development. BMC Genom 11:52

    Article  CAS  Google Scholar 

  • Jin D, Wang Y, Zhao Y et al (2013) MicroRNAs and their cross-talks in plant development. J Genet Genom 40:161–170

    Article  CAS  Google Scholar 

  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799

    Article  CAS  PubMed  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  CAS  PubMed  Google Scholar 

  • Kakrana A, Hammond R, Patel P et al (2014) sPARTA: a parallelized pipeline for integrated analysis of plant miRNA and cleaved mRNA data sets, including new miRNA target-identification software. Nucleic Acids Res 42:e139–e139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kantar M, Unver T, Budak H (2010) Regulation of barley miRNAs upon dehydration stress correlated with target gene expression. Funct Integr Genom 10:493–507

    Article  CAS  Google Scholar 

  • Karkute SG, Singh AK, Gupta OP et al (2017) CRISPR/Cas9 mediated genome engineering for improvement of horticultural crops. Front Plant Sci 8:1635

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawashima CG, Matthewman CA, Huang S et al (2011) Interplay of SLIM1 and miR395 in the regulation of sulfate assimilation in Arabidopsis. Plant J 66:863–876

    Article  CAS  PubMed  Google Scholar 

  • Kim W, Ahn HJ, Chiou T-J, Ahn JH (2011) The role of the miR399-PHO2 module in the regulation of flowering time in response to different ambient temperatures in Arabidopsis thaliana. Mol Cells 32:83–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JJ, Lee JH, Kim W et al (2012) The microRNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 module regulates ambient temperature-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Plant Physiol 159:461–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotak S, Larkindale J, Lee U et al (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10:310–316

    Article  CAS  PubMed  Google Scholar 

  • Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73

    Article  CAS  PubMed  Google Scholar 

  • Kruszka K, Pacak A, Swida-Barteczka A et al (2014) Transcriptionally and post-transcriptionally regulated microRNAs in heat stress response in barley. J Exp Bot 65:6123–6135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar RR, Pathak H, Sharma SK et al (2015) Novel and conserved heat-responsive microRNAs in wheat (Triticum aestivum L.). Funct Integr Genom 15:323–348

    Article  CAS  Google Scholar 

  • Lappartient AG, Vidmar JJ, Leustek T et al (1999) Inter-organ signaling in plants: regulation of ATP sulfurylase and sulfate transporter genes expression in roots mediated by phloem-translocated compound. Plant J 18:89–95

    Article  CAS  PubMed  Google Scholar 

  • Lei J, Sun Y (2014) miR-PREFeR: an accurate, fast and easy-to-use plant miRNA prediction tool using small RNA-Seq data. Bioinformatics 30:2837–2839

    Article  CAS  PubMed  Google Scholar 

  • Li W-X, Oono Y, Zhu J et al (2008) The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 20:2238–2251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M-Y, Wang F, Xu Z-S et al (2014a) High throughput sequencing of two celery varieties small RNAs identifies microRNAs involved in temperature stress response. BMC Genom 15:242

    Article  CAS  Google Scholar 

  • Li S, Liu J, Liu Z et al (2014b) Heat-induced TAS1 TARGET1 mediates thermotolerance via heat stress transcription factor A1a-directed pathways in Arabidopsis. Plant Cell 26:1764–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Wang T, Zhang Y, Li Y (2016) Overexpression of soybean miR172c confers tolerance to water deficit and salt stress but increases ABA sensitivity in transgenic Arabidopsis thaliana. J Exp Bot 67:175–194

    Article  CAS  PubMed  Google Scholar 

  • Li B, Cui G, Shen G et al (2017) Targeted mutagenesis in the medicinal plant Salvia miltiorrhiza. Sci Rep 7:43320

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang M, Haroldsen V, Cai X, Wu Y (2006) Expression of a putative laccase gene, ZmLAC1, in maize primary roots under stress. Plant Cell Environ 29:746–753

    Article  CAS  PubMed  Google Scholar 

  • Lin J-S, Kuo C-C, Yang I-C et al (2018) MicroRNA160 modulates plant development and heat shock protein gene expression to mediate heat tolerance in Arabidopsis. Front Plant Sci 9:1–16

    Article  Google Scholar 

  • Liu X, Chu Z (2015) Genome-wide evolutionary characterization and analysis of bZIP transcription factors and their expression profiles in response to multiple abiotic stresses in Brachypodium distachyon. BMC Genom 16:227

    Article  CAS  Google Scholar 

  • Liu Q, Yang T, Yu T et al (2017) Integrating small RNA sequencing with QTL mapping for identification of miRNAs and their target genes associated with heat tolerance at the flowering stage in rice. Front Plant Sci 8:43

    PubMed  PubMed Central  Google Scholar 

  • Lobell D, Field C (2007) Global scale climate–crop yield relationships and the impacts of recent warming. Environ Res Lett 2:14002

    Article  Google Scholar 

  • Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333:616–620

    Article  CAS  PubMed  Google Scholar 

  • Lorenzetti R, de Antonio AP,A, Paschoal GY, Domingues AR DS (2016) PlanTE-MIR DB: a database for transposable element-related microRNAs in plant genomes. Funct Integr Genom 16:235–242

    Article  CAS  Google Scholar 

  • Lu X, Guan Q, Zhu J (2013) Downregulation of CSD2 by a heat-inducible miR398 is required for thermotolerance in Arabidopsis. Plant Signal Behav 8:8–10

    Article  CAS  Google Scholar 

  • Lukasik A, Pietrykowska H, Paczek L et al (2013) High-throughput sequencing identification of novel and conserved miRNAs in the Brassica oleracea leaves. BMC Genom 14:801

    Article  CAS  Google Scholar 

  • Lukasik A, Wójcikowski M, Zielenkiewicz P (2016) Tools4miRs—one place to gather all the tools for miRNA analysis. Bioinformatics 32:2722–2724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma C, Burd S, Lers A (2015) miR408 is involved in abiotic stress responses in Arabidopsis. Plant J 84:169–187

    Article  CAS  PubMed  Google Scholar 

  • Macková H, Hronková M, Dobrá J et al (2013) Enhanced drought and heat stress tolerance of tobacco plants with ectopically enhanced cytokinin oxidase/dehydrogenase gene expression. J Exp Bot 64:2805–2815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahale BM, Fakrudin B, Ghosh S, Krishnaraj PU (2014) LNA mediated in situ hybridization of miR171 and miR397a in leaf and ambient root tissues revealed expressional homogeneity in response to shoot heat shock in Arabidopsis thaliana. J Plant Biochem Biotechnol 23:93–103

    Article  CAS  Google Scholar 

  • Mallory AC (2005) MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17:1

    Article  CAS  Google Scholar 

  • Mangrauthia SK, Bhogireddy S, Agarwal S et al (2017) Genome-wide changes in microRNA expression during short and prolonged heat stress and recovery in contrasting rice cultivars. J Exp Bot 68:2399–2412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • May P, Liao W, Wu Y et al (2013) The effects of carbon dioxide and temperature on microRNA expression in Arabidopsis development. Nat Commun 4:2145

    Article  CAS  PubMed  Google Scholar 

  • McCaig BC, Meagher RB, Dean JFD (2005) Gene structure and molecular analysis of the laccase-like multicopper oxidase (LMCO) gene family in Arabidopsis thaliana. Planta 221:619–636

    Article  CAS  PubMed  Google Scholar 

  • Meng Y, Chen D, Ma X et al (2010) Mechanisms of microRNA-mediated auxin signaling inferred from the rice mutant osaxr. Plant Signal Behav 5:252–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng J, Shi G-L, Luan Y-S (2016) Plant miRNA function prediction based on functional similarity network and transductive multi-label classification algorithm. Neurocomputing 179:283–289

    Article  Google Scholar 

  • Millar AA, Gubler F (2005) The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are MicroRNA-regulated genes that redundantly facilitate anther development. Plant Cell 17:705–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Min X, Zhang Z, Liu Y et al (2017) Genome-wide development of MicroRNA-based SSR markers in Medicago truncatula with their transferability analysis and utilization in related Legume species. Int J Mol Sci 18:2440

    Article  CAS  PubMed Central  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    Article  CAS  PubMed  Google Scholar 

  • Mondal TK, Ganie SA (2014) Identification and characterization of salt responsive miRNA-SSR markers in rice (Oryza sativa). Gene 535:204–209

    Article  CAS  PubMed  Google Scholar 

  • Muñoz-Mérida A, Perkins JR, Viguera E et al (2012) Semirna: searching for plant miRNAs using target sequences. Omi A J Integr Biol 16:168–177

    Article  CAS  Google Scholar 

  • Mutum RD, Kumar S, Balyan S et al (2016) Identification of novel miRNAs from drought tolerant rice variety Nagina 22. Sci Rep 6:30786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narayanan S, Tamura PJ, Roth MR et al (2016) Wheat leaf lipids during heat stress: I. High day and night temperatures result in major lipid alterations. Plant Cell Environ 39:787–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni Z, Hu Z, Jiang Q, Zhang H (2013) GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress. Plant Mol Biol 82:113–129

    Article  CAS  PubMed  Google Scholar 

  • Numnark S, Mhuantong W, Ingsriswang S, Wichadakul D (2012) C-mii: a tool for plant miRNA and target identification. BMC Genom 13:S16

    Article  Google Scholar 

  • Paicu C, Mohorianu I, Stocks M et al (2017) miRCat2: accurate prediction of plant and animal microRNAs from next-generation sequencing datasets. Bioinformatics 33:2446–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan C, Ye L, Zheng Y et al (2017) Identification and expression profiling of microRNAs involved in the stigma exsertion under high-temperature stress in tomato. BMC Genom 18:1–16

    Article  Google Scholar 

  • Pandey R, Joshi G, Bhardwaj AR et al (2014) A Comprehensive genome-wide study on tissue-specific and abiotic stress-specific miRNAs in Triticum aestivum. PLoS One 9:e95800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park YJ, Lee HJ, Kwak KJ et al (2014) MicroRNA400-guided cleavage of pentatricopeptide repeat protein mRNAs Renders Arabidopsis thaliana more susceptible to pathogenic bacteria and fungi. Plant Cell Physiol 55:1660–1668

    Article  CAS  PubMed  Google Scholar 

  • Qiu Z, Hai B, Guo J et al (2016) Characterization of wheat miRNAs and their target genes responsive to cadmium stress. Plant Physiol Biochem 101:60–67

    Article  CAS  PubMed  Google Scholar 

  • Quach TN, Nguyen HTM, Valliyodan B et al (2015) Genome-wide expression analysis of soybean NF-Y genes reveals potential function in development and drought response. Mol Genet Genom 290:1095–1115

    Article  CAS  Google Scholar 

  • Ragupathy R, Ravichandran S, Mahdi MSR et al (2016) Deep sequencing of wheat sRNA transcriptome reveals distinct temporal expression pattern of miRNAs in response to heat, light and UV. Sci Rep 6:39373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Remita MA, Lord E, Agharbaoui Z et al (2015) WMP: a novel comprehensive wheat miRNA database, including related bioinformatics software. 7–8:31–33

  • Reyes JL, Chua N-H (2007) ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J 49:592–606

    Article  CAS  PubMed  Google Scholar 

  • Rhoades MW, Reinhart BJ, Lim LP et al (2002) Prediction of plant microRNA targets. Cell 110:513–520

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez RE, Mecchia MA, Debernardi JM et al (2010) Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development 137:103–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers K, Chen X (2013) Biogenesis, turnover, and mode of action of plant MicroRNAs. Plant Cell 25:2383–2399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosewick N, Durkin K, Momont M et al (2013) Deep sequencing reveals abundant Pol III retroviral microRNA cluster in bovine leukemia virus-induced leukemia. J Acquir Immune Defic Syndr 62:S66

    Article  Google Scholar 

  • Roy JL, Blervacq A-S, Créach A et al (2017) Spatial regulation of monolignol biosynthesis and laccase genes control developmental and stress-related lignin in flax. BMC Plant Biol 17:124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubio-Somoza I, Weigel D (2013) Coordination of flower maturation by a regulatory circuit of three microRNAs. PLoS Genet 9:e1003374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258

    Article  CAS  PubMed  Google Scholar 

  • Saibo NJM, Lourenc T, Oliveira MM (2009) Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. Ann Bot 103(4):609–623

    Article  CAS  PubMed  Google Scholar 

  • Sailaja B, Voleti SR, Subrahmanyam D et al (2014) Prediction and expression analysis of miRNAs associated with heat stress in Oryza sativa. Rice Sci 21:3–12

    Article  Google Scholar 

  • Scharf K-D, Berberich T, Ebersberger I, Nover L (2012) The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochim Biophys Acta Gene Regul Mech 1819:104–119

    Article  CAS  Google Scholar 

  • Scheben A, Wolter F, Batley J et al (2017) Towards CRISPR/Cas crops-bringing together genomics and genome editing. New Phytol 216:682–698

    Article  CAS  PubMed  Google Scholar 

  • Schommer C, Bresso EG, Spinelli SV, Palatnik JF (2012) Role of MicroRNA miR319 in plant development. In: Sunkar R (ed) MicroRNAs in plant development and stress responses. Springer, Berlin, pp 29–47

    Chapter  Google Scholar 

  • Shan Q, Wang Y, Li J, Gao C (2014) Genome editing in rice and wheat using the CRISPR/Cas system. Nat Protoc 9:2395–2410

    Article  CAS  PubMed  Google Scholar 

  • Shinozuka H, Cogan NOI, Spangenberg GC, Forster JW (2012) Quantitative trait locus (QTL) meta-analysis and comparative genomics for candidate gene prediction in perennial ryegrass (Lolium perenne L.). BMC Genet 13:101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shriram V, Kumar V, Devarumath RM et al (2016) MicroRNAs as potential targets for abiotic stress tolerance in plants. Front Plant Sci 7:1–18

    Article  Google Scholar 

  • Singh I, Smita S, Mishra DC et al (2017) Abiotic stress responsive miRNA-target network and related markers (SNP, SSR) in Brassica juncea. Front Plant Sci 8:1943

    Article  PubMed  PubMed Central  Google Scholar 

  • Song Y, Chen Q, Ci D et al (2014) Effects of high temperature on photosynthesis and related gene expression in poplar. BMC Plant Biol 14:111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephenson TJ, McIntyre CL, Collet C, Xue G-P (2007) Genome-wide identification and expression analysis of the NF-Y family of transcription factors in Triticum aestivum. Plant Mol Biol 65:77–92

    Article  CAS  PubMed  Google Scholar 

  • Stief A, Altmann S, Hoffmann K et al (2014) Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors. Plant Cell 26:1792–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Dong B, Yin L et al (2013) PMTED: a plant microRNA target expression database. BMC Bioinform 14:174

    Article  CAS  Google Scholar 

  • Sunkar R, Zhu J (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunkar R, Li Y-F, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17:196–203

    Article  CAS  PubMed  Google Scholar 

  • Szcześniak MW, Makałowska I (2014) miRNEST 2.0: a database of plant and animal microRNAs. Nucleic Acids Res 42:D74–D77

    Article  CAS  PubMed  Google Scholar 

  • Szcześniak MW, Deorowicz S, Gapski J et al (2012) miRNEST database: an integrative approach in microRNA search and annotation. Nucleic Acids Res 40:D198–D204

    Article  CAS  PubMed  Google Scholar 

  • Tripathi A, Goswami K, Sanan-mishra N (2015) Role of bioinformatics in establishing microRNAs as modulators of abiotic stress responses: the new revolution. Front Physiol 6:286

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaucheret H (2009) AGO1 homeostasis involves differential production of 21-nt and 22-nt miR168 species by MIR168a and MIR168b. PLoS One 4:e6442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vidal EA, Araus V, Lu C et al (2010) Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana. Proc Natl Acad Sci 107:4477–4482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vitsios DM, Kentepozidou E, Quintais L et al (2017) Mirnovo: genome-free prediction of microRNAs from small RNA sequencing data and single-cells using decision forests. Nucleic Acids Res 45:e177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vlachos IS, Paraskevopoulou MD, Karagkouni D et al (2015) DIANA-TarBase v7.0: indexing more than half a million experimentally supported miRNA: mRNA interactions. Nucleic Acids Res 43:D153–D159

    Article  CAS  PubMed  Google Scholar 

  • Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669–687

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang X-J, Reyes JL, Chua N-H, Gaasterland T (2004) Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol 5:R65

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Lu M, Qiu C, Cui Q (2010) TransmiR: a transcription factor–microRNA regulation database. Nucleic Acids Res 38:D119–D122

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Sun F, Cao H et al (2012) TamiR159 directed wheat TaGAMYB cleavage and its involvement in anther development and heat response. PLoS One 7:e48445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Ye J, Tang W et al (2013) Loop nucleotide polymorphism in a putative miRNA precursor associated with seed length in Rice (Oryza sativa L.). Int J Biol Sci 9:578–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei J-Z, Tirajoh A, Effendy J, Plant AL (2000) Characterization of salt-induced changes in gene expression in tomato (Lycopersicon esculentum) roots and the role played by abscisic acid. Plant Sci 159:135–148

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Park MY, Conway SR et al (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Liu Q, Wang X et al (2013) mirTools 2.0 for non-coding RNA discovery, profiling, and functional annotation based on high-throughput sequencing. RNA Biol 10:1087–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin M, Wang Y, Yao Y et al (2010) Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biol 10:123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Shao T, Na Ding N et al (2016) miRNA–miRNA crosstalk: from genomics to phenomics. Brief Bioinf 2016:1–10

    Google Scholar 

  • Yadav CB, Muthamilarasan M, Pandey G et al (2014) Development of novel microRNA-based genetic markers in foxtail millet for genotyping applications in related grass species. Mol Breed 34:2219–2224

    Article  CAS  Google Scholar 

  • Yamaguchi A, Abe M (2012) Regulation of reproductive development by non-coding RNA in Arabidopsis: to flower or not to flower. J Plant Res 125:693–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi A, Wu M-F, Yang L et al (2009) The microRNA-regulated SBP-box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1. Dev Cell 17:268–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan K, Liu P, Wu CA et al (2012) Stress-induced alternative splicing provides a mechanism for the regulation of MicroRNA processing in Arabidopsis thaliana. Mol Cell 48:521–531

    Article  CAS  PubMed  Google Scholar 

  • Yi X, Zhang Z, Ling Y et al (2015) PNRD: a plant non-coding RNA database. Nucleic Acids Res 43:D982–D989

    Article  CAS  PubMed  Google Scholar 

  • You J, Zhang L, Song B et al (2015) Systematic analysis and identification of stress-responsive genes of the NAC gene family in Brachypodium distachyon. PLoS One 10:e0122027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu X, Wang H, Lu Y et al (2012) Identification of conserved and novel microRNAs that are responsive to heat stress in Brassica rapa. J Exp Bot 63:1025–1038

    Article  CAS  PubMed  Google Scholar 

  • Zhang B (2015) MicroRNA: a new target for improving plant tolerance to abiotic stress. J Exp Bot 66:1749–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Pan X, Anderson TA (2006) Identification of 188 conserved maize microRNAs and their targets. FEBS Lett 580:3753–3762

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Yu J, Li D et al (2010) PMRD: plant microRNA database. Nucleic Acids Res 38:D806–D813

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zou Z, Gong P et al (2011) Over-expression of microRNA169 confers enhanced drought tolerance to tomato. Biotechnol Lett 33:403–409

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Yue Y, Sheng L et al (2013a) PASmiR: a literature-curated database for miRNA molecular regulation in plant response to abiotic stress. BMC Plant Biol 13:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y-C, Yu Y, Wang C-Y et al (2013b) Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nat Biotechnol 31:848–852

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, You J, Chan Z (2015a) Identification and characterization of TIFY family genes in Brachypodium distachyon. J Plant Res 128:995–1005

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Jiang L, Wang J et al (2015b) MTide: an integrated tool for the identification of miRNA–target interaction in plants. Bioinformatics 31:290–291

    Article  CAS  PubMed  Google Scholar 

  • Zhao B, Liang R, Ge L et al (2007a) Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun 354:585–590

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Kim Y, Ding TT et al (2007b) miR172 regulates stem cell fate and defines the inner boundary of APETALA3 and PISTILLATA expression domain in Arabidopsis floral meristems. Plant J 51:840–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao B, Ge L, Liang R et al (2009) Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor. BMC Mol Biol 10:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Liu X, Guo C et al (2013) Identification and characterization of microRNAs from wheat (Triticum aestivum L.) under phosphorus deprivation. J Plant Biochem Biotechnol 22:113–123

    Article  CAS  Google Scholar 

  • Zhao M, Liu B, Wu K et al (2015) Regulation of OsmiR156h through alternative polyadenylation improves grain yield in rice. PLoS One 10:e0126154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, He Q, Chen G et al (2016) Regulation of non-coding RNAs in heat stress responses of plants. Front Plant Sci 7:1–9

    PubMed  PubMed Central  Google Scholar 

  • Zhao C, Liu B, Piao S et al (2017) Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci 114:9326–9331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong S-H, Liu J-Z, Jin H et al (2013) Warm temperatures induce transgenerational epigenetic release of RNA silencing by inhibiting siRNA biogenesis in Arabidopsis. Proc Natl Acad Sci 110:9171–9176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou M, Luo H (2013) MicroRNA-mediated gene regulation: potential applications for plant genetic engineering. Plant Mol Biol 83:59–75

    Article  CAS  PubMed  Google Scholar 

  • Zhou R, Wang Q, Jiang F et al (2016) Identification of miRNAs and their targets in wild tomato at moderately and acutely elevated temperatures by high-throughput sequencing and degradome analysis. Sci Rep 6:33777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Q-H, Helliwell CA (2011) Regulation of flowering time and floral patterning by miR172. J Exp Bot 62:487–495

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Ding Y, Liu H (2011) MiR398 and plant stress responses. Physiol Plant 143:1–9

    Article  CAS  PubMed  Google Scholar 

  • Zielezinski A, Dolata J, Alaba S et al (2015) mirEX 2.0-an integrated environment for expression profiling of plant microRNAs. BMC Plant Biol 15:144

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

VG acknowledge DST, New Delhi for awarding INSPIRE Faculty Award (DST/INSPIRE/04/2017/000413) during the tenure of which this review was written.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Gahlaut.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gahlaut, V., Baranwal, V.K. & Khurana, P. miRNomes involved in imparting thermotolerance to crop plants. 3 Biotech 8, 497 (2018). https://doi.org/10.1007/s13205-018-1521-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-018-1521-7

Keywords

Navigation