Skip to main content
Log in

The draft genome sequence of Clostridium sp. strain LJ4 with high furan and phenolic derivates’ tolerances occurring from lignocellulosic hydrolysates

  • Genome Reports
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The genome of a wild-type solventogenic Clostridium sp. strain LJ4 that could directly convert undetoxified lignocellulosic hydrolysate to butanol and tolerate high concentration of furan and phenolic derivates occurring in the lignocellulosic hydrolysate is described. 16S rDNA gene sequencing and analysis indicated that it is closely related to Clostridium acetobutylicum. The genome size of strain LJ4 is 3.90 Mp, which has a G + C content of 30.72% and encodes 2711 proteins. It also has one 0.19 Mp plasmid with 181 predicted encoding proteins. Alcohol dehydrogenases (ADs) and a nicotinamide adenine dinucleotide phosphate (NADPH)-dependent flavin mononucleotide (FMN) reductase were identified, which may play key roles in inhibitors’ resistance in lignocellulosic hydrolysate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Agrawal M, Chen RR (2011) Discovery and characterization of a xylose reductase from Zymomonas mobilis ZM4. Biotechnol Lett 33:2127–2133

    Article  CAS  Google Scholar 

  • Baral NR, Shah A (2014) Microbial inhibitors: formation and effects on acetone-butanol-ethanol fermentation of lignocellulosic biomass. Appl Microbiol Biotechnol 98:9151–9172

    Article  CAS  Google Scholar 

  • Chen C, Sun C, Wu YR (2018) The draft genome sequence of a novel high-efficient butanol-producing bacterium Clostridium diolis strain WST. Curr Microbiol 75:1011–1015

    Article  CAS  Google Scholar 

  • Dong JJ, Han RZ, Xu GC, Gong L, Xing WR, Ni Y (2018) Detoxification of furfural residues hydrolysate for butanol fermentation by Clostridium saccharobutylicum DSM 13864. Bioresour Technol 259:40–45. https://doi.org/10.1016/j.biortech.2018.02.098

    Article  CAS  PubMed  Google Scholar 

  • Ezeji T, Qureshi N, Blaschek HP (2007) Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol Bioeng 97:1460–1469

    Article  CAS  Google Scholar 

  • Filannino P, Bai Y, Di CR, Gobbetti M, Gänzle MG (2015) Metabolism of phenolic compounds by Lactobacillus spp. during fermentation of cherry juice and broccoli puree. Food Microbiol 46:272–279

    Article  CAS  Google Scholar 

  • Gu Y et al (2011) Economical challenges to microbial producers of butanol: feedstock, butanol ratio and titer. Biotechnol J 6:1348–1357

    Article  CAS  Google Scholar 

  • Guo T, Tang Y, Zhang QY, Du TF, Liang DF, Jiang M, Ouyang PK (2012) Clostridium beijerinckii mutant with high inhibitor tolerance obtained by low-energy ion implantation. J Ind Microbiol Biotechnol 39:401–407. https://doi.org/10.1007/s10295-011-1017-5

    Article  CAS  PubMed  Google Scholar 

  • Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform 11:119

    Article  Google Scholar 

  • Jurgens G, Survase S, Berezina O et al (2012) Butanol production from lignocellulosics. Biotechnol Lett 34:1415–1434

    Article  CAS  Google Scholar 

  • Lee SH, Yun EJ, Kim J, Sang JL, Um Y, Kim KH (2016) Biomass, strain engineering, and fermentation processes for butanol production by solventogenic Clostridia. Appl Microbiol Biotechnol 100:1–17

    Article  Google Scholar 

  • Liu ZL, Slininger PJ, Gorsich SW (2005) Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains. Appl Biochem Biotechnol 121(1–3):451–460

    Article  Google Scholar 

  • Liu ZL, Moon J, Andersh BJ, Slininger PJ, Weber S (2008) Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 81:743–753

    Article  CAS  Google Scholar 

  • Liu J, Guo T, Yang T, Xu J, Tang C, Liu D, Ying H (2017) Transcriptome analysis of Clostridium beijerinckii adaptation mechanisms in response to ferulic acid. Int J Biochem Cell B 86:14–21

    Article  CAS  Google Scholar 

  • Liu J, Lin Q, Chai X, Luo Y, Guo T (2018) Enhanced phenolic compounds tolerance response of Clostridium beijerinckii NCIMB 8052 by inactivation of Cbei_3304. Microb Cell Fact 17:35. https://doi.org/10.1186/s12934-018-0884-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17

  • Mukai N, Masaki K, Fujii T, Iefuji H (2014) Single nucleotide polymorphisms of PAD1 and FDC1 show a positive relationship with ferulic acid decarboxylation ability among industrial yeasts used in alcoholic beverage production. J Biosci Bioeng 118:50

    Article  CAS  Google Scholar 

  • Nawrocki EP, Burge SW, Bateman A et al (2014) Rfam 12.0: updates to the RNA families database. Nucleic Acids Res 43(D1):D130–D137

    Article  Google Scholar 

  • Shanmugam S, Sun C, Zeng X, Wu YR (2018) High-efficient production of biobutanol by a novel Clostridium sp. strain WST with uncontrolled pH strategy. Bioresour Technol 256:543–547

    Article  CAS  Google Scholar 

  • Sharma HK, Xu C, Qin W (2017) Biological pretreatment of lignocellulosic biomass for biofuels and bioproducts: an overview waste and biomass valorization. https://doi.org/10.1007/s12649-017-0059-y

  • Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829

    Article  CAS  Google Scholar 

  • Zhang Y, Han B, Ezeji TC (2012) Biotransformation of furfural and 5-hydroxymethyl furfural (HMF) by Clostridium acetobutylicum ATCC 824 during butanol fermentation. New Biotechnol 29:345–351

    Article  Google Scholar 

  • Zhang Y, Ujor V, Wick M, Ezeji TC (2015) Identification, purification and characterization of furfural transforming enzymes from Clostridium beijerinckii NCIMB 8052. Anaerobe 33:124–131. https://doi.org/10.1016/j.anaerobe.2015.03.005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Jiangsu Province Natural Science Foundation for Youths (BK20170993, BK20170997), the Project of State Key Laboratory of Materials-Oriented Chemical Engineering (KL16-08), the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture (XTE1840), the Key Science and Technology Project of Jiangsu Province (BE2016389), and the National Natural Science Foundation of China (no. 21706125, no. 21727818, no. 21706124, no. 31700092).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Jiang or Fengxue Xin.

Ethics declarations

Conflict of interest

The authors have declared there was no conflict of interest.

Additional information

Nucleotide sequence accession numbers

This Whole Genome project has been deposited into GenBank. The chromosome is under the accession of CP030018 and the plasmid is under the accession of CP030019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Jiang, Y., Chen, T. et al. The draft genome sequence of Clostridium sp. strain LJ4 with high furan and phenolic derivates’ tolerances occurring from lignocellulosic hydrolysates. 3 Biotech 8, 406 (2018). https://doi.org/10.1007/s13205-018-1430-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-018-1430-9

Keywords

Navigation