Skip to main content
Log in

Microparticle-enhanced polygalacturonase production by wild type Aspergillus sojae

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Polygalacturonases (PGs), an important industrial enzyme group classified under depolymerases, catalyze the hydrolytic cleavage of the polygalacturonic acid chain through the introduction of water across the oxygen bridge. In order to produce and increase the concentration of this enzyme group in fermentation processes, a new approach called microparticle cultivation, a promising and remarkable method, has been used. The aim of this study was to increase the PG activity of Aspergillus sojae using aluminum oxide (Al2O3) as microparticles in shake flask fermentation medium. Results indicated that the highest PG activity of 34.55 ± 0.5 U/ml was achieved with the addition of 20 g/L of Al2O3 while the lowest activity of 15.20 ± 0.2 U/mL was obtained in the presence of 0.1 g/L of Al2O3. In fermentation without microparticles as control, the activity was 15.64 ± 3.3 U/mL. Results showed that the maximum PG activity was 2.2-fold higher than control. Additionally, smaller pellets formed with the addition of Al2O3 where the lowest pellet diameter was 955.1 µm when 10 g/L of the microparticle was used. Also, it was noticed that biomass concentration gradually increased with increasing microparticle concentration in the fermentation media. Consequently, the PG activity was significantly increased in microparticle-enhanced shake flask fermentation. In fact, these promising preliminary data can be of significance to improve the enzyme activity in large-scale bioreactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • AlMatar M, Makky EA (2016) Cladosporium cladosporioides from the perspectives of medical and biotechnological approaches. 3 Biotech 6(1):4

    Article  Google Scholar 

  • Anand G, Yadav S, Yadav D (2016) Purification and characterization of polygalacturonase from Aspergillus fumigatus MTCC 2584 and elucidating its application in retting of Crotalaria juncea fiber. 3 Biotech 6(2):201

    Article  Google Scholar 

  • Antecka A, Bizukojc M, Ledakowicz S (2016a) Modern morphological engineering techniques for improving productivity of filamentous fungi in submerged cultures. World J Microbiol Biotechnol 32(12):193

    Article  Google Scholar 

  • Antecka A, Blatkiewicz M, Bizukojć M, Ledakowicz S (2016b) Morphology engineering of basidiomycetes for improved laccase biosynthesis. Biotech Lett 38(4):667–672

    Article  CAS  Google Scholar 

  • Botella C, Diaz A, De Ory I, Webb C, Blandino A (2007) Xylanase and pectinase production by Aspergillus awamori on grape pomace in solid state fermentation. Process Biochem 42(1):98–101

    Article  CAS  Google Scholar 

  • Coban HB, Demirci A (2016) Enhancement and modeling of microparticle-added Rhizopus oryzae lactic acid production. Bioprocess Biosyst Eng 39(2):323–330

    Article  CAS  Google Scholar 

  • Coban HB, Demirci A, Turhan I (2015a) Enhanced Aspergillus ficuum phytase production in fed-batch and continuous fermentations in the presence of talcum microparticles. Bioprocess Biosyst Eng 38(8):1431–1436

    Article  CAS  Google Scholar 

  • Coban HB, Demirci A, Turhan I (2015b) Microparticle-enhanced Aspergillus ficuum phytase production and evaluation of fungal morphology in submerged fermentation. Bioprocess Biosyst Eng 38(6):1075–1080

    Article  CAS  Google Scholar 

  • Demir H, Tari C (2016) Effect of physicochemical parameters on the polygalacturonase of an Aspergillus sojae mutant using wheat bran, an agro-industrial waste, via solid-state fermentation. J Sci Food Agri 96(10):3575–3582

    Article  CAS  Google Scholar 

  • Domingues FC, Queiroz JA, Cabral JMS, Fonseca LP (2000) The influence of culture conditions on mycelial structure and cellulase production by Trichoderma reesei Rut C-30. Enzyme Microbial Technol 26(5):394–401

    Article  CAS  Google Scholar 

  • Driouch H, Sommer B, Wittmann C (2010) Morphology engineering of Aspergillus niger for improved enzyme production. Biotechnol Bioeng 105(6):1058–1068

    CAS  Google Scholar 

  • Driouch H, Roth A, Dersch P, Wittmann C (2011) Filamentous fungi in good shape: microparticles for tailor-made fungal morphology and enhanced enzyme production. Bioeng Bugs 2(2):100–104

    Article  Google Scholar 

  • Driouch H, Hänsch R, Wucherpfennig T, Krull R, Wittmann C (2012) Improved enzyme production by bio-pellets of Aspergillus niger: targeted morphology engineering using titanate microparticles. Biotechnol Bioeng 109(2):462–471

    Article  CAS  Google Scholar 

  • Etschmann M, Huth I, Walisko R, Schuster J, Krull R, Holtmann D, Wittmann C, Schrader J (2015) Improving 2-phenylethanol and 6-pentyl-α-pyrone production with fungi by microparticle-enhanced cultivation (MPEC). Yeast 32(1):145–157

    CAS  Google Scholar 

  • Finkler ATJ, Biz A, Pitol LO, Medina BS, Luithardt H, de Lima Luz LF, Krieger N, Mitchell D (2017) Intermittent agitation contributes to uniformity across the bed during pectinase production by Aspergillus niger grown in solid-state fermentation in a pilot-scale packed-bed bioreactor. Biochem Eng J 121:1–12

    Article  CAS  Google Scholar 

  • Fratebianchi D, Crespo JM, Tari C, Cavalitto S (2017) Control of agitation rate and aeration for enhanced polygalacturonase production in submerged fermentation by Aspergillus sojae using agro-industrial wastes. J Chem Technol Biotechnol 92(2):305–310

    Article  CAS  Google Scholar 

  • Garg G, Singh A, Kaur A, Singh R, Kaur J, Mahajan R (2016) Microbial pectinases: an ecofriendly tool of nature for industries. 3 Biotech 6(1):1–13

    Article  Google Scholar 

  • Germec M, Yatmaz E, Karahalil E, Turhan İ (2017) Effect of different fermentation strategies on β-mannanase production in fed-batch bioreactor system. 3 Biotech 7(1):77

    Article  Google Scholar 

  • Gogus N, Tari C, Oncü S, Unluturk S, Tokatli F (2006) Relationship between morphology, rheology and polygalacturonase production by Aspergillus sojae ATCC 20235 in submerged cultures. Biochem Eng J 32(3):171–178

    Article  Google Scholar 

  • Gonciarz J, Bizukojc M (2014) Adding talc microparticles to Aspergillus terreus ATCC 20542 preculture decreases fungal pellet size and improves lovastatin production. Eng Life Sci 14(2):190–200

    Article  CAS  Google Scholar 

  • Hama S, Onodera K, Yoshida A, Noda H, Kondo A (2015) Improved production of phospholipase A 1 by recombinant Aspergillus oryzae through immobilization to control the fungal morphology under nutrient-limited conditions. Biochem Eng J 96:1–6

    Article  CAS  Google Scholar 

  • Heerd D, Diercks-Horn S, Fernandez-Lahore M (2014) Efficient polygalacturonase production from agricultural and agro-industrial residues by solid-state culture of Aspergillus sojae under optimized conditions. Springer Plus 3:742

    Article  Google Scholar 

  • Jørgensen TR (2007) Identification and toxigenic potential of the industrially important fungi, Aspergillus oryzae and Aspergillus sojae. J Food Prot 70(12):2916–2934

    Article  Google Scholar 

  • Kaup BA, Ehrich K, Pescheck M, Schrader J (2008) Microparticle-enhanced cultivation of filamentous microorganisms: increased chloroperoxidase formation by Caldariomyces fumago as an example. Biotechnol Bioeng 99(3):491–498

    Article  CAS  Google Scholar 

  • Kumar S, Sharma H, Sarkar B (2011) Effect of substrate and fermentation conditions on pectinase and cellulase production by Aspergillus niger NCIM 548 in submerged (SmF) and solid state fermentation (SSF). Food Sci Biotechnol 20(5):1289–1298

    Article  CAS  Google Scholar 

  • Liu CT, Erh MH, Lin SP, Lo KY, Chen KI, Cheng KC (2016a) Enrichment of two isoflavone aglycones in black soymilk by Rhizopus oligosporus NTU 5 in a plastic composite support bioreactor. J Sci Food Agri 96(11):3779–3786

    Article  CAS  Google Scholar 

  • Liu J-M, Yu T-C, Lin S-P, Hsu R-J, Hsu K-D, Cheng K-C (2016b) Evaluation of kojic acid production in a repeated-batch PCS biofilm reactor. J Biotechnol 218:41–48

    Article  CAS  Google Scholar 

  • Meneghel L, Reis GP, Reginatto C, Malvessi E, da Silveira MM (2014) Assessment of pectinase production by Aspergillus oryzae in growth-limiting liquid medium under limited and non-limited oxygen supply. Process Biochem 49(11):1800–1807

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428

    Article  CAS  Google Scholar 

  • Nakkeeran E, Gowthaman MK, Umesh-Kumar S, Subramanian R (2012) Techno-economic analysis of processes for Aspergillus carbonarius polygalacturonase production. J Biosci Bioeng 113(5):634–640

    Article  CAS  Google Scholar 

  • Niu K, Hu Y, Mao J, Zou S, Zheng Y (2015) Effect of microparticles on echinocandin B production by Aspergillus nidulans. Sheng Wu Gong Cheng Xue Bao 31(7):1082–1088

    Google Scholar 

  • Panda T, Naidu G, Sinha J (1999) Multiresponse analysis of microbiological parameters affecting the production of pectolytic enzymes by Aspergillus niger: a statistical view. Process Biochem 35(1):187–195

    Article  CAS  Google Scholar 

  • Sathya G, Naidu N, Panda T (1998) Application of response surface methodology to evaluate some aspects on stability of pectolytic enzymes from Aspergillus niger. Biochem Eng J 2(1):71–77

    Article  Google Scholar 

  • Sethi BK, Nanda PK, Sahoo S (2016) Enhanced production of pectinase by Aspergillus terreus NCFT 4269.10 using banana peels as substrate. 3 Biotech 6(1):1–15

    Article  Google Scholar 

  • Tari C, Gögus N, Tokatli F (2007) Optimization of biomass, pellet size and polygalacturonase production by Aspergillus sojae ATCC 20235 using response surface methodology. Enzyme Microbial Technol 40(5):1108–1116

    Article  CAS  Google Scholar 

  • Tokatli F, Tari C, Unluturk SM, Baysal NG (2009) Modeling of polygalacturonase enzyme activity and biomass production by Aspergillus sojae ATCC 20235. J Ind Microbiol Biotechnol 36(9):1139–1148

    Article  CAS  Google Scholar 

  • Tounsi H, Sassi AH, Romdhane ZB, Lajnef M, Dupuy J-W, Lapaillerie D, Lomenech A-M, Bonneu M, Gargouri A, Hadj-Taieb N (2016) Catalytic properties of a highly thermoactive polygalacturonase from the mesophilic fungus Penicillium occitanis and use in juice clarification. J Mol Catal B Enzym 127:56–66

    Article  CAS  Google Scholar 

  • Walisko R, Moench-Tegeder J, Blotenberg J, Wucherpfennig T, Krull R (2015) The taming of the shrew-controlling the morphology of filamentous eukaryotic and prokaryotic microorganisms. In: Krull R, Bley T (eds) Filaments in Bioprocesses. Springer, New York, pp 1–27

    Google Scholar 

  • Wang L, Ridgway D, Gu T, Moo-Young M (2005) Bioprocessing strategies to improve heterologous protein production in filamentous fungal fermentations. Biotechnol Adv 23(2):115–129

    Article  CAS  Google Scholar 

  • Wolf-Márquez VE, Martínez-Trujillo MA, Osorio GA, Patiño F, Álvarez MS, Rodríguez A, Sanromán MÁ, Deive FJ (2017) Scaling-up and ionic liquid-based extraction of pectinases from Aspergillus flavipes cultures. Biores Technol 225:326–335

    Article  Google Scholar 

  • Yang J, Jiao R-H, Yao L-Y, Han W-B, Lu Y-H, Tan R-X (2016) Control of fungal morphology for improved production of a novel antimicrobial alkaloid by marine-derived fungus Curvularia sp. IFB-Z10 under submerged fermentation. Process Biochem 51(2):185–194

    Article  CAS  Google Scholar 

  • Yatmaz E, Karahalil E, Germec M, Ilgin M, Turhan İ (2016) Controlling filamentous fungi morphology with microparticles to enhanced β-mannanase production. Bioprocess Biosyst Eng 39(9):1391–1399

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) Foundation Grant (#115 O 873). Authors also thank to the Akdeniz University Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irfan Turhan.

Ethics declarations

Conflict of interest

All the authors in this study mutually agree for submitting our manuscript to 3 Biotech and declare that they have no conflict of interest in the publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karahalil, E., Demirel, F., Evcan, E. et al. Microparticle-enhanced polygalacturonase production by wild type Aspergillus sojae . 3 Biotech 7, 361 (2017). https://doi.org/10.1007/s13205-017-1004-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-017-1004-2

Keywords

Navigation