Skip to main content
Log in

Theoretical evaluation of the refractive index sensing capability using the coupling of Tamm–Fano resonance in one-dimensional photonic crystals

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Biophotonic sensing techniques are an accurate best way for biosensing measurements. The main aim of the proposed device is to make a more effective sensor to detect the change in the refractive index of a sample. This sensor is based on the Tamm–Fano resonance in gold/porous semiconductor photonic crystal. Porous Gallium nitride has been used as an alternative multilayer Bragg reflector. The proposed structure composed of prism/Au/porous GaN/(GaN/porous GaN) N/substrate. The numerical studies for the proposed structure are calculated using the transfer matrix method. The sensitivity, FoM, and Q-factor observed from this device are 3 × 104 nm/RIU, 6.6 × 104 RIU−1, and 9 × 108. This study records sensitivity 2875 times higher than the experimental study of a similar structure in other wavelength range. The proposed sensor can be used in biosensing applications because it records high local environment sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

Requests for materials or code should be addressed to Z.A.Z.

Code availability

Requests for code should be addressed to Z.A.Z.

References

  • Abd-El-Ghany SE, Noum WM, Matar Z, Zaky ZA, Aly AH (2020) Optimized bio-photonic sensor using 1D-photonic crystals as a blood hemoglobin sensor. Phys Scr 96(3):035501

    Article  CAS  Google Scholar 

  • Ahmed AM, Mehaney A (2019) Ultra-high sensitive 1D porous silicon photonic crystal sensor based on the coupling of Tamm/Fano resonances in the mid-infrared region. Sci Rep 9(1):6973

    Article  CAS  Google Scholar 

  • Ahmed AM, Elsayed HA, Mehaney A (2020) High-performance temperature sensor based on one-dimensional pyroelectric photonic crystals comprising Tamm/Fano Resonances. Plasmonics:1–11

  • Aly AH, Zaky ZA (2019) Ultra-sensitive photonic crystal cancer cells sensor with a high-quality factor. Cryogenics 104:102991

    Article  CAS  Google Scholar 

  • Aly AH, Zaky ZA, Shalaby AS, Ahmed AM, Vigneswaran D (2020) Theoretical study of hybrid multifunctional one-dimensional photonic crystal as a flexible blood sugar sensor. Phys Scr 95(3):035510

    Article  CAS  Google Scholar 

  • Aly AH, Mohamed D, Zaky ZA, Matar ZS, Abd El-Gawaad NS, Shalaby AS, Tayeboun F, Mohaseb M (2021) Novel biosensor detection of tuberculosis based on photonic band gap materials. Mater Res-Ibero-Am J Mater 24(3):e20200483. https://doi.org/10.1590/1980-5373-MR-2020-0483

    Article  Google Scholar 

  • Armstrong E, O’Dwyer C (2015) Artificial opal photonic crystals and inverse opal structures–fundamentals and applications from optics to energy storage. J Mater Chem C 3(24):6109–6143

    Article  CAS  Google Scholar 

  • Auguié B, Bruchhausen A, Fainstein A (2015) Critical coupling to Tamm plasmons. J Opt 17(3):035003

    Article  CAS  Google Scholar 

  • Awasthi SK, Malaviya U, Ojha SP (2006) Enhancement of omnidirectional total-reflection wavelength range by using one-dimensional ternary photonic bandgap material. J Opt Soc Am B-Opt Phys 23(12):2566–2571

    Article  CAS  Google Scholar 

  • Ayyanar N, Raja GT, Sharma M, Kumar DS (2018) Photonic crystal fiber-based refractive index sensor for early detection of cancer. IEEE Sens J 18(17):7093–7099

    Article  CAS  Google Scholar 

  • Azzini S, Lheureux G, Symonds C, Benoit J-M, Senellart P, Lemaitre A, Greffet J-J, Blanchard C, Sauvan C, Bellessa J (2016) Generation and spatial control of hybrid Tamm plasmon/surface plasmon modes. ACS Photonics 3(10):1776–1781

    Article  CAS  Google Scholar 

  • Barker A Jr, Ilegems M (1973) Infrared lattice vibrations and free-electron dispersion in GaN. Phys Rev B 7(2):743

    Article  CAS  Google Scholar 

  • Celanovic I, Perreault D, Kassakian J (2005) Resonant-cavity enhanced thermal emission. Phys Rev B 72(7):075127

    Article  CAS  Google Scholar 

  • Emani NK, Chung T-F, Kildishev AV, Shalaev VM, Chen YP, Boltasseva A (2014) Electrical modulation of fano resonance in plasmonic nanostructures using graphene. Nano Lett 14(1):78–82

    Article  CAS  Google Scholar 

  • Exner AT, Pavlichenko I, Lotsch BV, Scarpa G, Lugli P (2013) Low-cost thermo-optic imaging sensors: a detection principle based on tunable one-dimensional photonic crystals. ACS Appl Mater Interfaces 5(5):1575–1582

    Article  CAS  Google Scholar 

  • Gao Y, Dong P, Shi Y (2020) Suspended slotted photonic crystal cavities for high-sensitivity refractive index sensing. Opt Expr 28(8):12272–12278

    Article  CAS  Google Scholar 

  • Han P, Wang H (2003) Extension of omnidirectional reflection range in one-dimensional photonic crystals with a staggered structure. J Opt Soc Am B-Opt Phys 20(9):1996–2001

    Article  CAS  Google Scholar 

  • Joannopoulos JD, Villeneuve PR, Fan S (1997) Photonic crystals: putting a new twist on light. Nature 386(6621):143–149

    Article  CAS  Google Scholar 

  • Joe YS, Satanin AM, Kim CS (2006) Classical analogy of Fano resonances. Phys Scr 74(2):259

    Article  CAS  Google Scholar 

  • John S (1987) Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett 58(23):2486

    Article  CAS  Google Scholar 

  • Kaliteevski M, Iorsh I, Brand S, Abram R, Chamberlain J, Kavokin A, Shelykh I (2007) Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror. Phys Rev B 76(16): 165415.

    Article  CAS  Google Scholar 

  • Karmakar S, Kumar D, Varshney R, Chowdhury DR (2020) Strong terahertz matter interaction induced ultrasensitive sensing in fano cavity based stacked metamaterials. J Phys D-Appl Phys 53:415101

    Article  CAS  Google Scholar 

  • Klimov VV, Pavlov AA, Treshin IV, Zabkov IV (2017) Fano resonances in a photonic crystal covered with a perforated gold film and its application to bio-sensing. J Phys D-Appl Phys 50(28):285101

    Article  CAS  Google Scholar 

  • Kumar S, Shukla MK, Maji PS, Das R (2017) Self-referenced refractive index sensing with hybrid-Tamm-plasmon-polariton modes in sub-wavelength analyte layers. J Phys D-Appl Phys 50(37):375106

    Article  CAS  Google Scholar 

  • Lheureux G, Monavarian M, Anderson R, DeCrescent RA, Bellessa J, Symonds C, Schuller JA, Speck J, Nakamura S, DenBaars SP (2020) Tamm plasmons in metal/nanoporous GaN distributed Bragg reflector cavities for active and passive optoelectronics. Opt Expr 28(12):17934–17943

    Article  CAS  Google Scholar 

  • Li Q, Chan C, Ho K, Soukoulis CM (1996) Wave propagation in nonlinear photonic band-gap materials. Phys Rev B 53(23):15577

    Article  CAS  Google Scholar 

  • Li T, Zhu L, Yang X, Lou X, Yu L (2020) A refractive index sensor based on H-shaped photonic crystal fibers coated with Ag-graphene layers. Sensors 20(3):741

    Article  Google Scholar 

  • Lide DR (2004) CRC handbook of chemistry and physics, vol 85. CRC Press

    Google Scholar 

  • Lončar M, Yoshie T, Scherer A, Gogna P, Qiu Y (2002) Low-threshold photonic crystal laser. Appl Phys Lett 81(15):2680–2682

    Article  CAS  Google Scholar 

  • Luk’yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9(9):707–715

    Article  CAS  Google Scholar 

  • Macleod HA (2017) Thin-film optical filters. CRC Press

    Google Scholar 

  • Mehaney A, Abadla MM, Elsayed HA (2021) 1D porous silicon photonic crystals comprising Tamm/Fano resonance as high performing optical sensors. J Mol Liq 322: 114978

    Article  CAS  Google Scholar 

  • Ordal MA, Bell RJ, Alexander RW, Long LL, Querry MR (1985) Optical properties of fourteen metals in the infrared and far infrared: Al Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Appl Optics 24(24):4493–4499

    Article  CAS  Google Scholar 

  • Panda A, Devi PP (2020) Photonic crystal biosensor for refractive index based cancerous cell detection. Opt Fiber Technol 54:102123

    Article  CAS  Google Scholar 

  • Rayleigh L (1887) XVII On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure. The London, Edinburgh Dublin Philosophical Magazine. J Sci 24(147):145–159

    Google Scholar 

  • Salem M, Sailor M, Harraz F, Sakka T, Ogata Y (2006) Electrochemical stabilization of porous silicon multilayers for sensing various chemical compounds. J Appl Phys 100(8):083520

    Article  CAS  Google Scholar 

  • Sasin M, Seisyan R, Kalitteevski M, Brand S, Abram R, Chamberlain J, Egorov AY, Vasil’Ev A, Mikhrin V, Kavokin A, (2008) Tamm plasmon-polaritons: Slow and spatially compact light. Appl Phys Lett 92(25):251112

    Article  CAS  Google Scholar 

  • Schroden RC, Al-Daous M, Blanford CF, Stein A (2002) Optical properties of inverse opal photonic crystals. Chem Mat 14(8):3305–3315

    Article  CAS  Google Scholar 

  • Skorobogatiy M, Yang J (2009) Fundamentals of photonic crystal guiding. Cambridge University Press

    Google Scholar 

  • Szipöcs R, Ferencz K, Spielmann C, Krausz F (1994) Chirped multilayer coatings for broadband dispersion control in femtosecond lasers. Opt Lett 19(3):201–203

    Article  Google Scholar 

  • Usievich B, Prokhorov A, Sychugov V (2002) A photonic-crystal narrow-band optical filter. Laser Phys 12(5):898–902

    Google Scholar 

  • Vinogradov A, Dorofeenko A, Erokhin S, Inoue M, Lisyansky A, Merzlikin A, Granovsky A (2006) Surface state peculiarities in one-dimensional photonic crystal interfaces. Phys Rev B 74(4):045128

    Article  CAS  Google Scholar 

  • Wang Z, Zhang J, Xu S, Wang L, Cao Z, Zhan P, Wang Z (2007) 1D partially oxidized porous silicon photonic crystal reflector for mid-infrared application. J Phys D-Appl Phys 40(15):4482

    Article  CAS  Google Scholar 

  • Wu L, Jia Y, Jiang L, Guo J, Dai X, Xiang Y, Fan D (2016) Sensitivity improved SPR biosensor based on the MoS2/graphene–aluminum hybrid structure. J Lightwave Technol 35(1):82–87

    Article  Google Scholar 

  • Yablonovitch E (1987) Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 58(20):2059

    Article  CAS  Google Scholar 

  • Yablonovitch E, Gmitter T (1989) Photonic band structure: the face-centered-cubic case. Phys Rev Lett 63(18): 1950

  • Yang Z-Y, Ishii S, Yokoyama T, Dao TD, Sun M-G, Pankin PS, Timofeev IV, Nagao T, Chen K-P (2017) Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons. ACS Photonics 4(9):2212–2219

    Article  CAS  Google Scholar 

  • Yeh P (1988) Optical waves in layered media, vol 95. Wiley, New York

    Google Scholar 

  • Yerino CD, Zhang Y, Leung B, Lee ML, Hsu T-C, Wang C-K, Peng W-C, Han J (2011) Shape transformation of nanoporous GaN by annealing: From buried cavities to nanomembranes. Appl Phys Lett 98(25):251910

    Article  CAS  Google Scholar 

  • Zaky ZA, Aly AH (2020) Theoretical study of a tunable low-temperature photonic crystal sensor using dielectric-superconductor nanocomposite layers. J Supercond Nov Magn 33:2983–2990

    Article  CAS  Google Scholar 

  • Zaky ZA, Aly AH (2021a). Highly Sensitive Salinity and Temperature Sensor Using Tamm Resonance. https://doi.org/10.21203/rs.3.rs-300379/v1

    Article  Google Scholar 

  • Zaky ZA, Aly AH (2021b) Modeling of a biosensor using Tamm resonance excited by graphene. Appl Optics 60(5):1411–1419

    Article  Google Scholar 

  • Zaky ZA, Ahmed AM, Shalaby AS, Aly AH (2020) Refractive index gas sensor based on the Tamm state in a one-dimensional photonic crystal: theoretical optimisation. Sci Rep 10(1):9736

    Article  CAS  Google Scholar 

  • Zaky ZA, Ahmed AM, Aly AH (2021) Remote temperature sensor based on Tamm Resonance. SILICON. https://doi.org/10.1007/s12633-021-01064-w

    Article  Google Scholar 

  • Zhang C, Park SH, Chen D, Lin D-W, Xiong W, Kuo H-C, Lin C-F, Cao H, Han J (2015a) Mesoporous GaN for photonic engineering highly reflective GaN mirrors as an example. ACS Photonics 2(7):980–986

    Article  CAS  Google Scholar 

  • Zhang Y-n, Zhao Y, Lv R-q (2015b) A review for optical sensors based on photonic crystal cavities. Sens Actuator A-Phys 233:374–389

    Article  CAS  Google Scholar 

  • Zhu T, Liu Y, Ding T, Fu WY, Jarman J, Ren CX, Kumar RV, Oliver RA (2017) Wafer-scale fabrication of non-polar mesoporous GaN distributed Bragg reflectors via electrochemical porosification. Sci Rep 7(1):1–8

    CAS  Google Scholar 

Download references

Acknowledgements

The author thanks the reviewers and editors for improving this article.

Funding

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Saudi Arabia for funding this work through the Research Group Program under Grant No. R.G.P 2/127/42.

Author information

Authors and Affiliations

Authors

Contributions

ZAZ invented the original idea for the study, implemented the computer code, performed the numerical simulations, analyzed the data, wrote and revised the main manuscript text. AS wrote the main manuscript text and analyzed the data. SA co-wrote and revised the main manuscript. AHA discussed the results and supervised this work. All the authors developed the final manuscript.

Corresponding author

Correspondence to Zaky A. Zaky.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Ethics declarations

This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaky, Z.A., Sharma, A., Alamri, S. et al. Theoretical evaluation of the refractive index sensing capability using the coupling of Tamm–Fano resonance in one-dimensional photonic crystals. Appl Nanosci 11, 2261–2270 (2021). https://doi.org/10.1007/s13204-021-01965-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-021-01965-7

Keywords

Navigation