Skip to main content
Log in

Electrokinetic ion transport at micro–nanochannel interfaces: applications for desalination and micromixing

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

The ion concentration polarization (ICP) phenomenon occurs widely near nano-channel/membrane interfaces. Due to its extraordinary selective ion transport ability, ICP has been applied in many fields, such as desalination, molecular preconcentration and biomolecular separation. This paper is devoted to describing the transport mechanism of buffer ions at micro–nanochannel interfaces. Here, a multiphysics coupling model is proposed, where the boundary condition for the fixed surface voltage is introduced to describe the effect of nanochannel networks. The effectiveness of the proposed model and the calculation process is confirmed through comparative simulations. Comparing the simulations with experimental ICP results shows that the proposed model can effectively describe the nonlinear distribution of electric fields and a typical vortex pair from flow phenomena. An analytic scaling law for the propagating ion depletion zone (IDZ) is proposed, and a theoretical analysis and numerical results confirm its existence. For transient evolution, the IDZ spreads as \({\sqrt t }\) due to diffusion for t < 0.01 s and as t due to convection from 0.01 s < t < 0.1 s. Furthermore, detailed studies are performed to elucidate the ICP mechanism for desalination. The factors affecting desalination are investigated, including the buffer concentration, length and performance of the nanochannel network, height of the microchannel and the tangential electric field. Finally, the proposed research confirms that this device also has excellent potential as a micromixer pump. The rapid mixing of neutral particles can be realized using nonlinear electrokinetic flows with a mixing efficiency reaching 91%. The presented results provide some important guidance and physical insights into the design and optimization for this kind of chip and other related applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

C 0 :

Buffer concentration (M)

C i :

Ion concentrations (M)

C m :

Nanochannel surface concentration (M)

C max :

Maximum in concentration mixture (M)

D :

Diffusion coefficient (m2/s)

E :

Electric field (V/m)

e :

Elementary charge (C)

F :

Faraday’s number (C/mol)

g :

Gravitational acceleration (m/s2)

H :

Characteristic length (m)

J i :

Ion flux (mol/m2 s)

L :

Microchannel length (m)

L m :

Nanochannel network length (m)

P :

Pressure (Pa)

R :

Gas constant (J/(mol K))

r :

Index of mixing

T :

Absolute temperature (K)

U :

Fluid velocity (m/s)

V L :

Voltage at the left end of the channel (V)

V sur :

Surface voltage (V)

V R :

Voltage at the right end of the channel (V)

V T :

Thermal voltage (V)

Z i :

Ion valence

\(\sigma_{ - }\) :

Negatively charged density (mC/m2)

\(\beta\) :

Coefficient of expansion (kg/mol)

\(\varepsilon_{0}\) :

Vacuum permittivity (F/m)

\(\varepsilon_{\text{r}} (c)\) :

Solvent permittivity (F/m)

\(\varepsilon_{\text{W}}\) :

Relative dielectric constant (1)

\(\zeta (c)\) :

Zeta potential (V)

\(\eta (c)\) :

Dynamic viscosity (Pa s)

\(\rho (c)\) :

Concentration-dependent density (kg/m3)

\(\rho_{0}\) :

Initial fluid density (kg/m3)

\(\rho_{\text{e}}\) :

Space charged density (C/m3)

\(\varPhi\) :

Electric potential (V)

1:

Cations

2:

Anions

3:

Particles

References

  • Chen Q, Jiang ZW, Yang ZH et al (2016) Differential-scheme based micromechanical framework for saturated concrete repaired by the electrochemical deposition method. Mater Struct 49(12):5183–5193

    Article  Google Scholar 

  • Chen Q, Jiang ZW, Yang ZH et al (2017) Differential-scheme based micromechanical framework for unsaturated concrete repaired by the electrochemical deposition method. Acta Mech 228:415–431

    Article  Google Scholar 

  • Chiu PH, Chang CC, Yang RJ (2013) Electrokinetic micromixing of charged and non-charged samples near nano–microchannel junction. Microfluid Nanofluid 14(5):839–844

    Article  CAS  Google Scholar 

  • Choi E, Kwon K, Lee SJ et al (2015) Non-equilibrium electrokinetic micromixer with 3d nanochannel networks. Lab Chip 15(8):1794–1798

    Article  CAS  Google Scholar 

  • Coelho D, Shapiro M, Thovert JF et al (1996) Electroosmotic phenomena in porous media. J Colloid Interface Sci 181(1):169–190

    Article  CAS  Google Scholar 

  • Demekhin EA, Shelistov VS, Polyanskikh SV (2011) Linear and nonlinear evolution and diffusion layer selection in electrokinetic instability. Phys Rev E 84(3):036318

    Article  CAS  Google Scholar 

  • Demekhin EA, Nikitin NV, Shelistov VS (2013) Direct numerical simulation of electrokinetic instability and transition to chaotic motion. Phys Fluids 25(12):122001

    Article  CAS  Google Scholar 

  • Deng DS, Wassim A, William AB, Bazant MZ et al (2015) Water purification by shock electrodialysis: deionization, filtration, separation, and disinfection. Desalination 357:77–83

    Article  CAS  Google Scholar 

  • Druzgalski CL, Andersen MB, Mani A (2013) Direct numerical simulation of electroconvective instability and hydrodynamic chaos near an ion-selective surface. Phys Fluids 25(11):8316–8322

    Article  CAS  Google Scholar 

  • Duan C, Majumdar A (2010) Anomalous ion transport in 2-nm hydrophilic nanochannels. Nat Nanotechnol 5:848–852

    Article  CAS  Google Scholar 

  • Dukhin SS (1991) Electrokinetic phenomena of the second kind and their applications. Adv Coll Interface Sci 35(91):173–196

    Article  CAS  Google Scholar 

  • Dydek EV, Zaltzman B, Rubinstein I et al (2011) Overlimiting current in a microchannel. Phys Rev Lett 107(11):118301

    Article  CAS  Google Scholar 

  • Hlushkou D, Knust KN, Crooks RM, Tallarek U (2016) Numerical simulation of electrochemical desalination. J Phys Condens Matter Inst Phys J 28(19):194001

    Article  CAS  Google Scholar 

  • Huang HN, Gao SB, Li X et al (2016) Microfluidic chips for effective desalination of seawater based on ionic concentration polarization. Chin J Anal Chem 44(12):1808–1813

    CAS  Google Scholar 

  • Jia M, Kim T (2014) Multiphysics simulation of ion concentration polarization induced by a surface-patterned nanoporous membrane in single channel devices. Anal Chem 86(20):10365

    Article  CAS  Google Scholar 

  • Kalaĭdin EN, Polyanskikh SV, Demekhin EA (2010) Self-similar solutions in ion-exchange membranes and their stability. Dokl Phys 55(10):502–506

    Article  CAS  Google Scholar 

  • Karatay E, Druzgalski CL, Mani A (2015) Simulation of chaotic electrokinetic transport: performance of commercial software versus custom-built direct numerical simulation codes. J Colloid Interface Sci 446:67–76

    Article  CAS  Google Scholar 

  • Karatay E, Andersen MB, Wessling M, Mani A (2016) Coupling between buoyancy forces and electroconvective instability near ion-selective surfaces. Phys Rev Lett 116(19):194501

    Article  CAS  Google Scholar 

  • Kim SJ, Wang YC, Lee JH et al (2007) Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel. Phys Rev Lett 99(4):044501

    Article  CAS  Google Scholar 

  • Kim D, Raj A, Zhu L et al (2008) Non-equilibrium electrokinetic micro/nano fluidic mixer. Lab Chip 8:625–628

    Article  CAS  Google Scholar 

  • Kim SJ, Li LD, Han J (2009) Amplified electrokinetic response concentration polarization near nanofluidic channel. Langmuir 25(13):7759–7765

    Article  CAS  Google Scholar 

  • Kim SJ, Ko SH, Kang KH, Han J (2010) Direct seawater desalination by ion concentration polarization. Nat Nanotechnol 5(4):297–301

    Article  CAS  Google Scholar 

  • Lee J, Kim S, Kim C, Yoon J (2014) Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques. Energy Environ Sci 7(11):3683–3689

    Article  CAS  Google Scholar 

  • Li Z, Liu W, Gong L et al (2017) Accurate multi-physics numerical analysis of particle preconcentration based on ion concentration polarization. Int J Appl Mech 9(08):1750107. https://doi.org/10.1142/S1758825117501071

  • Luo K, Wu J, Yi HL, Tan HP (2016) Lattice Boltzmann model for Coulomb-driven flows in dielectric liquids. Phys Rev E 93:1–11

    Google Scholar 

  • Luo K, Wu J, Yi HL, Tan HP (2018) Three-dimensional finite amplitude electroconvection in dielectric liquids. Phys Fluids 30:023602

    Article  CAS  Google Scholar 

  • Mani A, Zangle TA, Santiago JG (2009) On the propagation of concentration polarization from microchannel–nanochannel interfaces. Part I: Analytical model and characteristic analysis. Langmuir 25(6):3898–3908

    Article  CAS  Google Scholar 

  • Marino S, Shapiro M, Adler PM (2001) Coupled transports in heterogeneous media. J Colloid Interface Sci 243(2):391–419

    Article  CAS  Google Scholar 

  • Mishchuk NA, Heldal T, Volden T et al (2009) Micropump based on electroosmosis of the second kind. Electrophoresis 30(20):3499–3506

    Article  CAS  Google Scholar 

  • Nikonenko VV, Kovalenko AV, Urtenov MK et al (2014) Desalination at overlimiting currents: state-of-the-art and perspectives. Desalination 342(5):85–106

    Article  CAS  Google Scholar 

  • Ouyang W, Ye X, Li Z et al (2018) Deciphering ion concentration polarization-based electrokinetic molecular concentration at the micro–nanofluidic interface: theoretical limits and scaling laws. Nanoscale. https://doi.org/10.1039/C8NR02170H

    Article  Google Scholar 

  • Peng R, Li D (2015) Effects of ionic concentration gradient on electroosmotic flow mixing in a microchannel. J Colloid Interface Sci 440:126–132

    Article  CAS  Google Scholar 

  • Pham VS, Li Z, Lim KM et al (2012) Direct numerical simulation of electroconvective instability and hysteretic current-voltage response of a permselective membrane. Phys Rev E 86(4 Pt 2):046310

    Article  CAS  Google Scholar 

  • Revil A, Pezard PA, Glover PWJ (1999a) Streaming potential in porous media: 1. theory of the zeta potential. J Geophys Res Atmos 104(B9):20021–20031

    Article  CAS  Google Scholar 

  • Revil A, Schwaeger H, Iii LMC et al (1999b) Streaming potential in porous media: 2. theory and application to geothermal systems. J Geophys Res Solid Earth 104(B9):20033–20048

    Article  CAS  Google Scholar 

  • Rubinstein II, Zaltzman B (2000) Electro-osmotically induced convection at a permselective membrane. Phys Rev E 62(2 Pt A):2238

    Article  CAS  Google Scholar 

  • Rubinstein I, Zaltzman B (2008) Electro-osmotic slip of the second kind and instability in concentration polarization at electrodialysis membranes. Math Models Methods Appl Sci 11(02):263–300

    Article  Google Scholar 

  • Rubinstein I, Zaltzman B (2015) Equilibrium electroconvective instability. Phys Rev Lett 114(11):114502

    Article  CAS  Google Scholar 

  • Shen M, Yang H, Sivagnanam V et al (2010) Microfluidic protein preconcentrator using a microchannel-integrated nafion strip: experiment and modeling. Anal Chem 82(24):9989

    Article  CAS  Google Scholar 

  • Shi PP, Liu W (2018) Length-dependent instability of shear electroconvective flow: from electroconvective instability to Rayleigh-Bénard instability. J Appl Phys 124(20):204304

    Article  CAS  Google Scholar 

  • Sung KB, Liao KP, Liu YL, Tian WC (2013) Development of a nanofluidic preconcentrator with precise sample positioning and multi-channel preconcentration. Microfluid Nanofluid 14(3–4):645–655

    Article  CAS  Google Scholar 

  • Wang YC, Stevens AL, Han J (2005) Million-fold preconcentration of proteins and peptides by nanofluidic filter. Anal Chem 77(14):4293–4299

    Article  CAS  Google Scholar 

  • Yeh LH, Zhang M, Qian S et al (2012) Ion concentration polarization in polyelectrolyte-modified nanopores. J Phys Chem C 116(15):8672–8677

    Article  CAS  Google Scholar 

  • Yossifon G, Chang HC (2008) Selection of nonequilibrium overlimiting currents: universal depletion layer formation dynamics and vortex instability. Phys Rev Lett 101(25):254501

    Article  CAS  Google Scholar 

  • Yu Q, Silber-Li Z (2011) Measurements of the ion-depletion zone evolution in a micro/nano-channel. Microfluid Nanofluid 11(5):623–631

    Article  CAS  Google Scholar 

  • Zangle TA, Mani A, Santiago JG (2009) On the propagation of concentration polarization from microchannel–nanochannel interfaces. Part II: Numerical and experimental study. Langmuir 25(6):3909–3916

    Article  CAS  Google Scholar 

  • Zangle TA, Mani A, Santiago JG (2010a) Effects of constant voltage on time evolution of propagating concentration polarization. Anal Chem 82(8):3114–3117

    Article  CAS  Google Scholar 

  • Zangle TA, Mani A, Santiago JG (2010b) Theory and experiments of concentration polarization and ion focusing at microchannel and nanochannel interfaces. Chem Soc Rev 39(3):1014

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (Grant Nos. 11972257, 11802225 and 11472193) and Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2019JQ-261). The authors gratefully acknowledge these supports. We also thank anonymous reviewers for their helpful comments on an earlier draft of this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yueting Zhou or Pengpeng Shi.

Appendix A: Numerical verification

Appendix A: Numerical verification

See Fig. 8.

Fig. 8
figure 8

Comparison of our presented results and the previous results. a Previous numerical results (Jia and Kim 2014). b Our presented numerical results

By neglecting the surface voltage boundary and no-slip boundary caused by the nanochannel network, the presented theoretical model can be directly compared to the simple model presented by Jia and Kim (2014) to prove the correctness of the numerical process. For this simplified case, an excellent agreement between the prediction from the present results and the previous simulation results is achieved. As a result, the present numerical calculation process has been validated.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Zhou, Y. & Shi, P. Electrokinetic ion transport at micro–nanochannel interfaces: applications for desalination and micromixing. Appl Nanosci 10, 751–766 (2020). https://doi.org/10.1007/s13204-019-01207-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-019-01207-x

Keywords

Navigation