Skip to main content
Log in

Research on rhenium–iridium alloy coating on microgroove molds in precision glass molding

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

There is an increasing demand for microgrooves in optical systems with a pitch at wave length level. Precision glass molding (PGM) is one of the most efficient methods for fabricating microgrooves on glass surface. Nickel–phosphorus (Ni–P) exhibits excellent cutting properties and is developed as the mold material for glass microgrooves. However, the phosphorus in Ni–P mold tends to diffuse into the glass during the PGM process at high temperatures, which may reduce the optical performance of the molded glass microgroove component. In addition, the atomic diffusion increases the interface friction coefficient between the glass and the mold, resulting in the decrease of molding accuracy of the microgroove array. To solve these problems, a rhenium–iridium (Re–Ir) alloy coating is deposited on the surface of the Ni–P microgroove mold by ion sputtering. In this paper, the surface roughness of the mold before and after coating with Re–Ir alloy coating is investigated. The mechanical properties of Ni–P and the Re–Ir alloy coating are obtained using a combination of finite element method (FEM) and experimental tests. The mold deformation after heating to the molding temperature is analyzed. The results show that the mechanical properties of the Ni–P mold surface can be strengthened after being plated with Re–Ir alloy coating, the Re–Ir coating isolates the diffusion of phosphorus from the Ni–P mold, and improve the forming accuracy of glass microgrooves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Alaboodi A, Hussain Z (2017) Finite element modeling of nano-indentation technique to characterize thin film coatings. J King Saud Univ Eng Sci 31:61–69

    Google Scholar 

  • Bouzakis K, Michailidis N, Erkens G (2001) Thin hard coatings stress–strain curve determination through a fem supported evaluation of nanoindentation test results. Surf Coat Technol 142(1):102–109

    Article  Google Scholar 

  • Hava S, Auslender M (2000) Design and analysis of low-reflection grating microstructures for a solar energy absorber. Sol Energy Mater Sol Cells 61(2):143–151

    Article  CAS  Google Scholar 

  • Hu L, Dai S, Weng J, Xiao S, Wang K (2007) Microstructure design of nanoporous tio2 photoelectrodes for dye-sensitized solar cell modules. J Phys Chem B 111(2):358–362

    Article  CAS  Google Scholar 

  • Ito T, Nakanishi K, Nishikawa M, Yokoyama Y, Takeuchi Y (1995) Regularity and narrowness of the intervals of the microgrooves on the rubbed polymer surfaces for liquid crystal alignment. Polym J 27(3):240–246

    Article  CAS  Google Scholar 

  • Lee J, Park S, Yang S, Kim Y (2004) Fabrication of a v-groove on the optical fiber connector using a miniaturized machine tool. J Mater Process Technol 155(1):1716–1722

    Article  Google Scholar 

  • Li C, Fang Y, Chu W, Cheng M (2012) Design of a prism light-guide plate for an LCD backlight module. J Soc Inf Disp 16(4):545–550

    Article  Google Scholar 

  • Li P, Xie J, Cheng J, Jiang Y (2015) Study on weak-light photovoltaic characteristics of solar cell with a microgroove lens array on glass substrate. Opt Express 23(7):192–203

    Article  Google Scholar 

  • Liu Y, Zhao W, Zhou T, Liu X, Wang X (2016) Microgroove machining on crystalline nickel phosphide plating by single-point diamond cutting. Int J Adv Manuf Technol 91(1–4):1–8

    Google Scholar 

  • Liu X, Zhou T, Pang S, Xie J, Wang X (2017) Burr formation mechanism of ultraprecision cutting for microgrooves on nickel phosphide in consideration of the diamond tool edge radius. Int J Adv Manuf Technol 94(12):1–7

    Google Scholar 

  • Ma Y, Zhang Y, Yu H, Zhang X, Shu X, Tang B (2013) Plastic characterization of metals by combining nanoindentation test and finite element simulation. Trans Nonferrous Met Soc China 23(8):2368–2373

    Article  CAS  Google Scholar 

  • Masuda J, Yan J, Zhou T, Kuriyagawa T, Fukase Y (2011) Thermally induced atomic diffusion at the interface between release agent coating and mould substrate in a glass moulding press. J Phys D Appl Phys 44(21):215–302

    Article  Google Scholar 

  • Moon C (2010) The effect of interfacial microstructure on the interfacial strength of glass fiber/polypropylene resin composites. J Appl Polym Sci 54(1):73–82

    Article  Google Scholar 

  • Palarie I, Dascalu C, Iacobescu G (2010) Controlling the orientation of microgrooves and the depth of the ripple structure in dye-doped liquid crystal cells. Liq Cryst 37(2):195–199

    Article  CAS  Google Scholar 

  • Patel D, Kalidindi S (2016) Correlation of spherical nanoindentation stress–strain curves to simple compression stress–strain curves for elastic–plastic isotropic materials using finite element models. Acta Mater 112:295–302

    Article  CAS  Google Scholar 

  • Pathak S, Kalidindi S (2015) Spherical nanoindentation stress–strain curves. Mater Sci Eng, R 91:1–36

    Article  Google Scholar 

  • Qin M, Ji V, Wu Y, Chen C, Li J (2005) Determination of proof stress and strain-hardening exponent for thin film with biaxial residual stresses by in situ XRD stress analysis combined with tensile test. Surf Coat Technol 192(2):139–144

    Article  CAS  Google Scholar 

  • Ren B, Liu Z, Li D, Shi L, Cai B, Wang M (2012) Corrosion behavior of cucrfenimn high entropy alloy system in 1 M sulfuric acid solution. Mater Corros 63(9):828–834

    Article  CAS  Google Scholar 

  • Satish D, Kumar D, Merklein M (2017) Effect of temperature and punch speed on forming limit strains of AA5182 alloy in warm forming and improvement in failure prediction in finite element analysis. J Strain Anal Eng Des 52(4):258–273

    Article  Google Scholar 

  • Wang B, Zhang Z, Chang K, Cui J, Rosenkranz A, Yu J, Lin C, Chen G, Zang K, Luo J, Jiang N, Guo D (2018) New deformation-induced nanostructure in silicon. Nano Lett 18:4611–4617

    Article  CAS  Google Scholar 

  • Weaver J, Priddy M, Mcdowell D, Kalidindi S (2016) On capturing the grain-scale elastic and plastic anisotropy of alpha-Ti with spherical nanoindentation and electron back-scattered diffraction. Acta Mater 117:23–34

    Article  CAS  Google Scholar 

  • Xie J, Zhou T, Liu Y, Kuriyagawa T, Wang X (2016a) Mechanism study on microgroove forming by ultrasonic vibration assisted hot pressing. Precis Eng 46:270–277

    Article  Google Scholar 

  • Xie J, Zhou T, Liu Y, Kuriyagawa T, Wang X (2016b) The effects of ultrasonic vibration in hot pressing for microgrooves. Mater Sci Forum 861:121–126

    Article  Google Scholar 

  • Xie J, Zhou T, Ruan B, Du Y, Wang X (2017) Effects of interface thermal resistance on surface morphology evolution in precision glass molding for microlens array. Appl Opt 56(23):6622–6628

    Article  CAS  Google Scholar 

  • Yu Q, Zhou T, Jiang Y, Yan X, An Z, Wang X (2018) Preparation of graphene-enhanced nickel–phosphorus composite films by ultrasonic-assisted electroless plating. Appl Surf Sci 435:617–625

    Article  CAS  Google Scholar 

  • Zhang Z, Cui J, Chang K, Liu D, Chen G, Jiang N (2011) Deformation induced new pathways in silicon. Nanoscale 11:9862–9868

    Article  Google Scholar 

  • Zhang Z, Huo F, Zhang X, Guo D (2012) Fabrication and size prediction of crystalline nanoparticles of silicon induced by nanogrinding with ultrafine diamond grits. Scr Mater 67(7–8):657–660

    Article  CAS  Google Scholar 

  • Zhang Z, Yang S, Guo D, Yuan B, Guo X, Zhang B (2015a) Deformation twinning evolution from a single crystal in a face-centered-cubic ternary alloy. Sci Rep 5:11290–11296

    Article  CAS  Google Scholar 

  • Zhang Z, Wang B, Kang R, Zhang B, Guo D (2015b) Changes in surface layer of silicon wafers from diamond scratching. CIRP Ann Manuf Technol 64(1):349–352

    Article  Google Scholar 

  • Zhang Z, Cui J, Wang B, Wang Z, Kang R, Guo D (2017) A novel approach of mechanical chemical grinding. J Alloy Compd 726:514–524

    Article  CAS  Google Scholar 

  • Zhou T, Yan J, Masuda J, Oowada T, Kuriyagawa T (2011) Investigation on shape transferability in ultraprecision glass molding press for microgrooves. Precis Eng 35(2):214–220

    Article  CAS  Google Scholar 

  • Zhou T, Xie J, Yan J, Tsunemoto K, Wang X (2017a) Improvement of glass formability in ultrasonic vibration assisted molding process. Int J Precis Eng Manuf 18(1):57–62

    Article  Google Scholar 

  • Zhou T, Xie J, Yan J, Tsunemoto K, Wang X (2017b) Improvement of glass formability in ultrasonic vibration assisted molding process. Int J Precis Eng Manuf 18(1):57–62

    Article  Google Scholar 

  • Zhou T, Liu X, Liang Z, Liu Y, Xie J, Wang X (2017c) Recent advancements in optical microstructure fabrication through glass molding process. Front Mech Eng 12(1):1–20

    Article  Google Scholar 

  • Zhou T, Zhu Z, Liu X, Liang Z, Wang X (2018) A review of the precision glass molding of chalcogenide glass (chg) for infrared optics. Micromachines 9(7):337–341

    Article  Google Scholar 

  • Zhu X, Wei J, Chen L, Liu J, Hei L, Li C (2015) Anti-sticking re-ir coating for glass molding process. Thin Solid Films 584:305–309

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financed by the National Key Basic Research Program of China (No. 2015CB059900), the National Natural Science Foundation of China (No. 51775046), and the China Postdoctoral Science Foundation (No. 2019M653761).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianfeng Zhou.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, J., Zhou, T., Zhu, Z. et al. Research on rhenium–iridium alloy coating on microgroove molds in precision glass molding. Appl Nanosci 11, 797–806 (2021). https://doi.org/10.1007/s13204-019-01097-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-019-01097-z

Keywords

Navigation