Skip to main content
Log in

Electrochemically active XWO4 (X = Co, Cu, Mn, Zn) nanostructure for water splitting applications

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Electrochemically active XWO4 (X = Co, Cu, Mn, Zn) nanostructures were synthesized successfully by employing solvothermal method. The processing parameters’ effect such as time, temperature, pH and solvents on morphological and electrochemical OER performance of XWO4 nanostructures was investigated. The excellent OER response was observed for XWO4 nanostructures synthesized at optimum processing condition. The synthesized samples’ superior electrochemical performance was found to be in the following order CoWO4 > MnWO4 > CuWO4 > ZnWO4 by employing CV and LSV studies. The electrochemical impedance spectroscopic analysis was done for all the samples. Good stability over 3600 s was reported for the best-performed samples of XWO4 nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abbas SC, Wu J, Huang Y, Babu DD, Anandhababu G, Arsalan Ghausi M, Wu M, Wang Y (2018) Novel strongly coupled tungsten–carbon–nitrogen complex for efficient hydrogen evolution reaction. Int J Hydrogen Energy 43:16–23

    Article  Google Scholar 

  • Alias SS, Ismail AB, Mohamad AA (2010) Effect of pH on ZnO nanoparticle properties synthesized by sol–gel centrifugation. J Alloys Compds 499:231–237

    Article  Google Scholar 

  • AlShehri SM, Ahmed J, Ahamad T, Arunachalam P, Ahmad T, Khan A (2017) Bifunctional electro-catalytic performances of CoWO4 nanocubes for water redox reactions (OER/ORR). RSC Adv 7:45615

    Article  Google Scholar 

  • Bajdich M, García-Mota Mn, Vojvodic A, Nørskov JK, Bell AT (2013) Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J Am Chem Soc 135:13521–13530

    Article  Google Scholar 

  • Blasse G, Dirksen GJ, Hazencamp M, Gunter JR (1987) The luminescence of magnesium tungstate dihydrate, MgWO4·2H2O Mater. Res Bull 22:813

    Article  Google Scholar 

  • Bradley JS, Tesche B, Busser W, Maase M, Reetz MT (2000) Surface spectroscopic study of the stabilization mechanism for shape-selectively synthesized nanostructured transition metal colloids. J Am Chem Soc 122:4631–4636

    Article  Google Scholar 

  • Cao J, Luo B, Lin H, Xu B, Chen S (2012) Thermodecomposition synthesis of WO3/H2WO4 heterostructures with enhanced visible light photocatalytic properties. Appl Catal B 288:111–112

    Google Scholar 

  • Cao GX, Xu N, Chen ZJ, Kang Q, Dai HB, Wang P (2017) Cobalt–tungsten–boron as an active electrocatalyst for water electrolysis. Chem Select 2:6187–6193

    Google Scholar 

  • Chen Y, Ren R, Wen Z, Ci S, Chang J, Mao S, Chen J (2018) Superior electrocatalysis for hydrogen evolution with crumpled graphene/tungsten disulfide/tungsten trioxide ternary nanohybrids. Nano Energy. https://doi.org/10.1016/j.nanoen.2018.02.023

  • Cook TR, Dogutan DK, Reece SY, Surendranath Y, Teets TS, Nocera DG (2010) Solar energy supply and storage for the legacy and non legacy worlds. Chem Rev 110:6474–6502

    Article  Google Scholar 

  • Cui Y, Wei Q, Park H, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293:1289–1292

    Article  Google Scholar 

  • Dao KA, Nguyen TT, Huong Nguyen TM, Nguyen DT (2015) Comparison of some morphological and absorption properties of the nanoparticles Au/TiO2 embedded films prepared by different technologies on the substrates for application in the plasmonic solar cell. Adv Nat Sci Nanosci Nanotechnol 6:015018

    Article  Google Scholar 

  • Daturi M, Busca G, Borel MM, Leclaire A, Piaggio P (1997) Vibrational and XRD study of the system CdWO4–CdMoO4. J Phys Chem B 101:4358–4369

    Article  Google Scholar 

  • Dey S, Ricciardo RA, Cuthbert HL, Woodward PM (2014) Metal-to-metal charge transfer in AWO4 (A = Mg, Mn, Co, Ni, Cu, or Zn) compounds with the wolframite structure. Inorg Chem 53:4394–4399

    Article  Google Scholar 

  • Dhilip Kumar R, Karuppuchamy S (2014) Microwave-assisted synthesis of copper tungstate nanopowder for supercapacitor applications. Ceram Int 40:12397–12402

    Article  Google Scholar 

  • Dhilip Kumar R, Andou Y, Karuppuchamy S (2016) Microwave-assisted synthesis of Zn–WO3 and ZnWO4 for pseudocapacitor applications. J Phys Chem Solids 92:94–99

    Article  Google Scholar 

  • Djurisic AB, Leung YH, Tam KH, Su YFH, Ding L, Ge WK, Zhong YC, Wong KS, Chan WK, Tam HL, Cheah KW, Wok WMK, Phillips DL (2007) Defect emissions in ZnO nanostructures. Nanotechnology 18:095702

    Article  Google Scholar 

  • Duan X, Huang Y, Cui Y, Wang J, Lieber CM (2001) Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409:66–69

    Article  Google Scholar 

  • Errandonea D, Manjón FJ, Garro N, Rodriguez-Hernández P, Radescu S, Mujica A, Munoz A, Tu CY (2008) Combined Raman scattering and ab initio investigation of pressure-induced structural phase transitions in the scintillator ZnWO4. Phys Rev B 78:054116

    Article  Google Scholar 

  • Fatima Anis S, Hashaikeh R (2018) Electrochemical water splitting using nano-zeolite Y supported tungsten oxide electrocatalysts. J Nanopart Res 20:47

    Article  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2003) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838

    Article  Google Scholar 

  • Fu H, Pan C, Zhang L, Zhu Y (2007) Synthesis, characterization and photocatalytic properties of nanosized Bi2WO6, PbWO4 and ZnWO4 catalysts. Mater Res Bull 42:696–706

    Article  Google Scholar 

  • Gao B, Fan H, Zhang X, Song L (2012) Template-free hydrothermal synthesis and high photocatalytic activity of ZnWO4 nanorods. Mater Sci Eng B Solid 177:1126–1132

    Article  Google Scholar 

  • Gray HR (2009) Powering the planet with solar fuel. Nat Chem 1:7

    Article  Google Scholar 

  • Hardcastle F, Wachs I (1995) Determination of the molecular structures of tungstates by Raman spectroscopy. J Raman Spectrosc 26:397

    Article  Google Scholar 

  • He GJ, Li JM, Li WY, Li B, Noor N, Xu K, Hu JQ, Parkin IP (2015) One pot synthesis of nickel foam supported self-assembly of NiWO4 and CoWO4 nanostructures that act as high performance electrochemical capacitor electrodes. J Mater Chem A 3:14272–14278

    Article  Google Scholar 

  • Jansi Rani B, Ravina M, Saravanakumar B, Ravi G, Ganesh V, Ravichandran S, Yuvakkumar R (2018a) Ferrimagnetism in cobalt ferrite (CoFe2O4) nanoparticles. Nano Struct Nano Objects 14:84–91

    Article  Google Scholar 

  • Jansi Rani B, Durga M, Ravi G, Krishnaveni P, Ganesh V, Ravichandran S, Yuvakkumar R (2018b) Temperature-dependent physicochemical properties of magnesium ferrites (MgFe2O4). Appl Phys A 124:319

    Article  Google Scholar 

  • Jia H, Stark J, Zhou LQ, Ling C, Sekito T, Markin Z (2012) Different catalytic behavior of amorphous and crystalline cobalt tungstate for electrochemical water oxidation. RSC Adv 2:10874–10881

    Article  Google Scholar 

  • Jiao F, Frei H (2009) Nanostructured cobalt oxide clusters in mesoporous silica as efficient oxygen-evolving catalysts. Angew Chem Int Ed 48:1841–1844

    Article  Google Scholar 

  • Kalinko A, Kuzmin A (2009) Raman and photoluminescence spectroscopy of zinc tungstate powders. J Lumin 129:1144–1147

    Article  Google Scholar 

  • Kanade KG, Kale BB, Aiyer RC, Das BK (2006) Effect of solvents on the synthesis of nano-size zinc oxide and its properties. Mater Res Bull 41:590–600

    Article  Google Scholar 

  • Kanan MW, Nocera DG (2008) In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321:1072

    Article  Google Scholar 

  • Kang JS, Kim J, Lee MJ, Son YJ, Jeong J, Chung DY, Lim A, Choe H, Park H, Sung YE (2017) Electrochemical synthesis of nanoporous tungsten carbide and its application as electrocatalysts for photoelectrochemical cells. Nanoscale 9:5413–5424

    Article  Google Scholar 

  • Karunakaran G, Suriyaprabha R, Manivasakan P, Yuvakkumar R, Rajendran V (2013) Impact of nano and bulk ZrO2, TiO2 particles on soil nutrient contents and PGPR. Journal of nanoscience nanotechnology 13:678–685

    Article  Google Scholar 

  • Kishore R, Cao X, Zhang X, Bieberle-Hutter A (2018) Electrochemical water oxidation on WO3 surfaces: a density functional theory study. Catal Today https://doi.org/10.1016/j.cattod.2018.02.030

  • Kwon YJ, Kim KH, Lim CS, Shim KB (2002) Alumina phase transformation behavior on titania-doped nano a-alumina by a solid liquid process. J Ceram Pro Res 3:146

    Google Scholar 

  • Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci 103:15729–15735

    Article  Google Scholar 

  • Li ZH, He Q, He L, Hu P, Li W, Yan HW, Peng XZ, Huang CY, Mai LQ (2017) Self-sacrificed synthesis of carbon-coated SiOx nanowires for high capacity lithium ion battery anodes. J Mater Chem A 5:4183–4189

    Article  Google Scholar 

  • Ling C, Zhou LQ, Jia H (2014) First-principles study of crystalline CoWO4 as oxygen evolution reaction catalyst. RSC Adv 4:24692

    Article  Google Scholar 

  • Liu J, Ye X, Wang H, Zhu M, Wang B, Yan H (2003) The influence of pH and temperature on the morphology of hydroxyapatite synthesized by hydrothermal method. Ceram Int 29:629–633

    Article  Google Scholar 

  • Liu C, Zhou J, Xiao Y, Yang L, Yang D, Zhou D (2017) Structural and electrochemical studies of tungsten carbide/carbon composites for hydrogen evolution. Int J Hydrogen Energy 42:29781–29790

    Article  Google Scholar 

  • Lopez XA, Fuentes AF, Zaragoza MM, Diaz Guillen JA, Gutierrez JS, Ortiz AL, Martinez VC (2016) Synthesis, characterization and photocatalytic evaluation of MWO4 (M ¼ Ni, Co, Cu and Mn) tungstates. Int J Hydrogen Energy 41:23312–23317

    Article  Google Scholar 

  • Lu F, Sui J, Su J, Jin C, Shen M, Yang R (2014) Hollow spherical La0.8Sr0.2MnO3 perovskite oxide with enhanced catalytic activities for the oxygen reduction reaction. J Power Sources 271:55–59

    Article  Google Scholar 

  • McKone JR, Lewis NS, Gray HB (2013) Will solar-driven water-splitting devices see the light of day? Chem Mater 26:407

    Article  Google Scholar 

  • Montemayora SM, Fuentes AF (2004) Electrochemical characteristics of lithium insertion in several 3D metal tungstates (MWO4, M = Mn, Co, Ni and Cu) prepared by aqueous reactions. Ceram Int 30:393–400

    Article  Google Scholar 

  • Mukherjee S, Sarkar K, Wiederrecht GP, Schaller RD, Gosztola DJ, Stroscio MA, Dutta M (2018) Defect induced structural inhomogeneity, ultraviolet light emission and near-band-edge photoluminescence broadening in degenerate In2O3 nanowires. Nanotechnology 29(17):175201

    Article  Google Scholar 

  • Naderia HR, Nasab AS, Nasrabadi MR, Ganjali MR (2017) Decoration of nitrogen-doped reduced graphene oxide with cobalt. Appl Surf Sci 423:1025–1034

    Article  Google Scholar 

  • Naik SJ, Salker AV, Solid state studies on cobalt and copper tungstates nano materials, Solid State Sci 12 (2010) 2065

  • Nasrabadi MR, Pourmortazavi SM, Ganjali MR, Hajimirsadeghi SS, Zahedi MM (2013a) Electrosynthesis and characterization of zinc tungstate nanoparticles. J Mol Struct 1047:31–36

    Article  Google Scholar 

  • Nasrabadi MR, Pourmortazavi SM, Shalamzari MK, Hajimirsadeghi SS, Zahedi MM (2013b) Optimization of synthesis procedure and structure characterization of manganese tungstate nanoplates, Cent. Eur J Chem 11(8):1393–1401

    Google Scholar 

  • Nian YR, Teng H (2002) Nitric acid modification of activated carbon electrodes for improvement of electrochemical capacitance. J Electrochem Soc 149:1008–1014

    Article  Google Scholar 

  • Nishiyama K, Sasano J, Yokoyama S, Izaki M (2017) Electrochemical preparation of tungsten oxide hydrate films with controlled bandgap energy. Thin Solid Films 625:29–34

    Article  Google Scholar 

  • Peng ZA, Peng X, Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth, J Am Chem Soc 124 (20012):3343

  • Peral J, Ollis DF (1997) TiO2 photocatalyst deactivation by gas-phase oxidation of heteroatom organics. J Mol Catal A Chem 115:347

    Article  Google Scholar 

  • Perales RL, Fuertes JR, Errandonea D, Garcia DM, Segura A (2008) Optical absorption of divalent metal tungstates: correlation between the band-gap energy and the cation ionic radius. Europhys Lett 83:37002

    Article  Google Scholar 

  • Pourmortazavi SM, Nasrabadi MR, Shalamzari MK, Zahedi MM, Hajimirsadeghi SS, Omrani I (2012) Synthesis, structure characterization and catalytic activity of nickel tungstate nanoparticles. Appl Surf Sci 263:745

    Article  Google Scholar 

  • Pourmortazavi SM, Nasrabadi MR, Shalamzari MK, Ghaeni HR, Hajimirsadeghi SS (2014) Facile chemical synthesis and characterization of copper tungstate nanoparticles. J Inorg Organomet Polym 24:333–339

    Article  Google Scholar 

  • Priya DS, Suriyaprabha R, Yuvakkumar R, Rajendran V (2014) Chitosan-incorporated different nanocomposite HPMC films for food preservation. J Nanoparticle Res 16:2248

    Article  Google Scholar 

  • Ptaka M, Maczkaa M, Hermanowicza K, Pikula A, Hanuza J (2012) Temperature-dependent Raman and IR studies of multiferroic MnWO4 doped with Ni2+ ions, Spectrochim. Acta Part A 86:85–92

    Article  Google Scholar 

  • Rani BJ, Raj SP, Saravanakumar B, Ravi G, Ganesh V, Ravichandran S, Yuvakkumar R (2017) Controlled synthesis and electrochemical properties of Ag-doped Co3O4 nanorods. Int J Hydrogen Energy 42:29666–29671

    Article  Google Scholar 

  • Ruiz-Fuertes J, Errandonea D, Segura A, Manjon FJ, Zhu Z, Tu CY (2008) Growth, characterization, and high-pressure optical studies of CuWO4. High Pressure Res 28:565–570

    Article  Google Scholar 

  • Sagadevan S, Podder J, Das I (2016) Synthesis and characterization of CoWO4 nanoparticles via chemical precipitation technique. J Mater Sci Mater Electron 27:9885–9890

    Article  Google Scholar 

  • Sankarrajan S, Aravindan S, Yuvakkumar R, Sakthipandi K, Rajendran V (2009) Anomalies of ultrasonic velocities, attenuation and elastic moduli in Nd1−xSrxMnO3 perovskite manganite materials. J Magn Magn Mater 321:3611–3620

    Article  Google Scholar 

  • Saravanakumar B, Muthu Lakshmi S, Ravi G, Ganesh V, Sakunthala A, Yuvakkumar R (2017) Electrochemical properties of rice-like copper manganese oxide (CuMn2O4) nanoparticles for pseudocapacitor applications. J Alloys Compds 723:115–122

    Article  Google Scholar 

  • Sharma PK, Jilavi MH, Nass R, Schmidt H (1999) Tailoring the particle size from µm → nm scale by using a surface modifier and their size effect on the fluorescence properties of europium doped yttria. J Lumin 82:187–193

    Article  Google Scholar 

  • Shu C, Kang S, Jin Y, Yue X, Shen PK (2017) Bifunctional porous non-precious metal WO2 hexahedral networks as an electrocatalyst for full water splitting. J Mater Chem A 5:9655–9660

    Article  Google Scholar 

  • Sriraman KR, Ganesh Sundara Raman S, Seshadri SK (2007) Corrosion behaviour of electrodeposited nanocrystalline Ni–W and Ni–Fe–W alloys. Mater Sci Eng A 460–461:39–45

    Article  Google Scholar 

  • Srirapu VKVP., Kumar A, Srivastava P, Singh RN, Sinha ASK (2016) Nanosized CoWO4 and NiWO4 as efficient oxygen-evolving electrocatalysts. Electrochim Acta 209:75–84

    Article  Google Scholar 

  • Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y (2011) A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334:1383

    Article  Google Scholar 

  • Tang J, Shen J, Li N, Ye M (2016) Facile synthesis of layered MnWO4/reduced raphene oxide for supercapacitor application. J Alloys Compds 666:15–22

    Article  Google Scholar 

  • Thongtem S, Wannapop S, Thongtem T (2009a) Characterization of CoWO4 nano-particles produced using the spray pyrolysis. Ceram Int 35:2087–2091

    Article  Google Scholar 

  • Thongtem S, Wannapop S, Thongtem T (2009b) Characterization of MnWO4 with flower-like clusters produced using spray pyrolysis. Trans Nonferrous Met Soc China 19:100–104

    Article  Google Scholar 

  • Tian T, Jiang J, Ai L (2017) In situ electrochemically generated composite-type CoOx/WOx in self-activated cobalt tungstate nanostructures: implication for highly enhanced electrocatalytic oxygen evolution. Electrochim Acta 224:551–560

    Article  Google Scholar 

  • Umena Y, Kawakami K, Shen JR, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 A. Nature 473:55–60

    Article  Google Scholar 

  • Vamvasakis I, Georgaki I, Vernardou D, Kenanakis G, Katsarakis N (2015) Synthesis of WO3 catalytic powders: evaluation of photocatalytic activity under NUV/visible light irradiation and alkaline reaction pH. J Solgel Sci Technol 76:120

    Article  Google Scholar 

  • Walter MG, Warren EL, McKone JR, Boettcher SW, Mi QX, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110:6446–6473

    Article  Google Scholar 

  • Wang Q, Yan J, Wang Y, Wei T, Zhang M, Jing X, Fan Z (2014) Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors. Carbon 67:119–127

    Article  Google Scholar 

  • Wang XX, Li Y, Liu MC, Kong LB (2018) Fabrication and electrochemical investigation of MWO4 (M = Co, Ni) nanoparticles as high-performance anode materials for lithium-ion batteries. Ionics 24:363–372

    Article  Google Scholar 

  • Wei C, Huang Y, Zhang X, Chen X, Jing Y (2016) Soft-template hydrothermal synthesis of nanostructured copper(II) tungstate cubes for electrochemical charge storage application. Electrochim Acta 220:156–163

    Article  Google Scholar 

  • Xu X, Shen J, Li N, Ye M (2014) Facile synthesis of reduced graphene oxide/CoWO4 nanocomposites with enhanced electrochemical performances for supercapacitors. Electrochim Acta 150:23–34

    Article  Google Scholar 

  • Yu SH, Liu B, Mo MS, Huang JH, Liu XM, Qian YT (2003) General synthesis of single-crystal tungstate nanorods/nanowires: a facile, low-temperature solution approach. Adv Funct Mater 13:639–647

    Article  Google Scholar 

  • Yu J, Wang G, Cheng B, Zhou M (2007) Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders. Appl Catal B Environ 69:171–180

    Article  Google Scholar 

  • Yuvakkumar R, Hong SI (2015) Nd2O3: novel synthesis and characterization. J Sol Gel Sci Technol 73:511–517

    Article  Google Scholar 

  • Zhao X, Yao W, Wu Y, Zhang S, Yang H, Zhu Y (2006) Fabrication and photoelectrochemical properties of porous ZnWO4 film. J Solid State Chem 179:2562–2570

    Article  Google Scholar 

  • Zhou C, Cheng J, Hou K, Zhu Z, Zheng Y (2017) Preparation of CuWO4@Cu2O film on copper mesh by anodization for oil/water separation and aqueous pollutant degradation. Chem Eng J 307:803–811

    Article  Google Scholar 

  • Zhu Y, Liu S, Jin C, Bie S, Yang R, Wu J (2015) MnOx decorated CeO2 nanorods as cathode catalyst for rechargeable lithium-air batteries. J Mater Chem A 3:13563–13567

    Article  Google Scholar 

  • Zhu Y, Chen G, Zhong Y, Zhou W, Shao Z (2018) Rationally designed hierarchically structured tungsten nitride and nitrogen-rich graphene-like carbon nanocomposite as efficient hydrogen evolution electrocatalyst. Adv Sci 5:1700603

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by UGC Start-Up Research Grant no. F.30–326/2016 (BSR) and the Deanship of Scientific Research at King Saud University (Research group no. RGP-1438-029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Yuvakkumar.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, B.J., Ravi, G., Ravichandran, S. et al. Electrochemically active XWO4 (X = Co, Cu, Mn, Zn) nanostructure for water splitting applications. Appl Nanosci 8, 1241–1258 (2018). https://doi.org/10.1007/s13204-018-0780-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-018-0780-2

Keywords

Navigation