Skip to main content
Log in

Applications of high-throughput sequencing to symbiotic nematodes of the genus Heterorhabditis

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Entomopathogenic nematodes of the genus Heterorhabditis live in symbiosis with pathogenic Photorhabdus bacteria. Heterorhabditis nematodes are entirely dependent on these bacteria for their food source; in return, the nematodes offer the bacteria a way to infect and kill insects. For their part, Photorhabdus bacteria are lethal to a broad range of insect hosts, to other nematodes, and to other microorganisms, but not to their Heterorhabditis hosts. These nematodes offer the potential to provide a robust experimental system for the in•depth study of a mutually beneficial symbiotic relationship, with both members of the partnership accessible to molecular and genetic studies. New genomic technologies offer the possibility for this potential to be realized, and for Heterorhabditis nematodes to become a standard model system for the investigation of host•symbiote relationships. We present a perspective on the application of these technologies to nematode•bacterial symbiosis and an update on our efforts to sequence three Heterorhabditis species reported at the recent NemaSym meeting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Akhurst RJ, Mourant RG, Baud L, Boemare NE (1996) Phenotypic and DNA relatedness between nematode symbionts and clinical strains of the genus Photorhabdus (Enterobacteriaceae). Int J Syst Bacteriol 46:1034–1041

    Article  PubMed  CAS  Google Scholar 

  • Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3:e3376

    Article  PubMed  Google Scholar 

  • Baugh LR, Demodena J, Sternberg PW (2009) RNA Pol II accumulates at promoters of growth genes during developmental arrest. Science 324:92–94

    Article  PubMed  CAS  Google Scholar 

  • Bennett HP, Clarke DJ (2005) The pbgPE operon in Photorhabdus luminescens is required for pathogenicity and symbiosis. J Bacteriol 187:77–84

    Article  PubMed  CAS  Google Scholar 

  • Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell HR et al (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53–59

    Article  PubMed  CAS  Google Scholar 

  • C. elegans sequencing consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018

  • Ciche TA, Ensign JC (2003) For the insect pathogen Photorhabdus luminescens, which end of a nematode is out? Appl Environ Microbiol 69:1890–1897

    Article  PubMed  CAS  Google Scholar 

  • Ciche TA, Sternberg PW (2007) Postembryonic RNAi in Heterorhabditis bacteriophora: a nematode insect parasite and host for insect pathogenic symbionts. BMC Dev Biol 7:101

    Article  PubMed  Google Scholar 

  • Ciche TA, Kim KS, Kaufmann-Daszczuk B, Nguyen KC, Hall DH (2008) Cell Invasion and Matricide during Photorhabdus luminescens Transmission by Heterorhabditis bacteriophora Nematodes. Appl Environ Microbiol 74:2275–2287

    Article  PubMed  CAS  Google Scholar 

  • Clarke DJ (2008) Photorhabdus: a model for the analysis of pathogenicity and mutualism. Cell Microbiol 10:2159–2167

    Article  PubMed  CAS  Google Scholar 

  • Doitsidou M, Poole RJ, Sarin S, Bigelow H, Hobert O (2010) C. elegans mutant identification with a one-step whole-genome-sequencing and SNP mapping strategy. PloS one 5:e15435

    Article  PubMed  Google Scholar 

  • Duchaud E, Rusniok C, Frangeul L, Buchrieser C, Givaudan A, Taourit S, Bocs S, Boursaux-Eude C, Chandler M, Charles JF et al (2003) The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nat Biotechnol 21:1307–1313

    Article  PubMed  CAS  Google Scholar 

  • Enright MR, Griffin CT (2004) Specificity of association between Paenibacillus spp. and the entomopathogenic nematodes, Heterorhabditis spp. Microb Ecol 48:414–423

    Article  PubMed  CAS  Google Scholar 

  • Enright MR, McInerney JO, Griffin CT (2003) Characterization of endospore-forming bacteria associated with entomopathogenic nematodes, Heterorhabditis spp., and description of Paenibacillus nematophilus sp. nov. Int J Syst Evol Microbiol 53:435–441

    Article  PubMed  CAS  Google Scholar 

  • Forst S, Nealson K (1996) Molecular biology of the symbiotic-pathogenic bacteria Xenorhabdus spp. and Photorhabdus spp. Microbiol Rev 60:21–43

    PubMed  CAS  Google Scholar 

  • Gnerre S, Maccallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ, Sharpe T, Hall G, Shea TP, Sykes S et al (2011) High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci U S A 108:1513–1518

    Article  PubMed  CAS  Google Scholar 

  • Hallem EA, Dillman AR, Hong AV, Zhang Y, Yano JM, DeMarco SF, Sternberg PW (2011) A sensory code for host seeking in parasitic nematodes. Current biology: CB 21:377–383

    Article  PubMed  CAS  Google Scholar 

  • Han R, Ehlers R (1999) Trans-specific nematicidal activity of Photorhabdus luminescens. Nematology 1:687–693

    Article  Google Scholar 

  • Han R, Ehlers RU (2000) Pathogenicity, development, and reproduction of Heterorhabditis bacteriophora and Steinernema carpocapsae under axenic in vivo conditions. J Invertebr Pathol 75:55–58

    Article  PubMed  CAS  Google Scholar 

  • Hashmi S, Hashmi G, Glazer I, Gaugler R (1998) Thermal response of Heterorhabditis bacteriophora transformed with the Caenorhabditis elegans hsp70 encoding gene. J Exp Zool 281:164–170

    Article  PubMed  CAS  Google Scholar 

  • Hu PJ (2007) Dauer. WormBook, ed. The C. elegans Research Community, doi/10.1895/wormbook.1.144.1, http://www.wormbook.org.

  • Hu KJ, Li JX, Webster JM (1999) Nematicidal metabolites produced by Photorhabdus luminescens (Enterobacteriaceae), bacterial symbiont of entomopathogenic nematodes. Nematology 1:457–469

    Article  CAS  Google Scholar 

  • Koltai H, Glazer I, Segal D (1994) Phenotypic and genetic characterization of two new mutants of Heterorhabditis bacteriophora. J Nematol 26:32–39

    PubMed  CAS  Google Scholar 

  • Li J, Chen G, Webster JM, Czyzewska E (1995) Antimicrobial metabolites from a bacterial symbiont. J Nat Prod 58:1081–1086

    Article  PubMed  CAS  Google Scholar 

  • Li L, Stoeckert CJ Jr, Roos DS (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13:2178–2189

    Article  PubMed  CAS  Google Scholar 

  • Li G, Fullwood MJ, Xu H, Mulawadi FH, Velkov S, Vega V, Ariyaratne PN, Mohamed YB, Ooi HS, Tennakoon C et al (2010) ChIA-PET tool for comprehensive chromatin interaction analysis with paired-end tag sequencing. Genome Biol 11:R22

    Article  PubMed  Google Scholar 

  • Loewenstein Y, Raimondo D, Redfern OC, Watson J, Frishman D, Linial M, Orengo C, Thornton J, Tramontano A (2009) Protein function annotation by homology-based inference. Genome Biol 10:207

    Article  PubMed  Google Scholar 

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    PubMed  CAS  Google Scholar 

  • Metzker ML (2010) Sequencing technologies - the next generation. Nat Rev Genet 11:31–46

    Article  PubMed  CAS  Google Scholar 

  • Miller JR, Koren S, Sutton G (2010) Assembly algorithms for next-generation sequencing data. Genomics 95:315–327

    Article  PubMed  CAS  Google Scholar 

  • Milstead JE (1979) Heterorhabditis bacteriophora as a vector for introducing its associated bacterium into the hemocoel of galleria-mellonella larvae. J Invertebr Pathol 33:324–327

    Article  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature methods 5:621–628

    Article  PubMed  CAS  Google Scholar 

  • Mortazavi A, Schwarz EM, Williams B, Schaeffer L, Antoshechkin I, Wold BJ, Sternberg PW (2010) Scaffolding a Caenorhabditis nematode genome with RNA-seq. Genome Res 20:1740–1747

    Article  PubMed  CAS  Google Scholar 

  • Neely RK, Deen J, Hofkens J (2011) Optical mapping of DNA: single-molecule-based methods for mapping genomes. Biopolymers 95:298–311

    Article  PubMed  CAS  Google Scholar 

  • Neiman M, Lundin S, Savolainen P, Ahmadian A (2011) Decoding a substantial set of samples in parallel by massive sequencing. PLoS One 6:e17785

    Article  PubMed  CAS  Google Scholar 

  • Nikoloski Z, Grimbs S, Klie S, Selbig J (2011) Complexity of automated gene annotation. Bio Systems 104:1–8

    Article  PubMed  CAS  Google Scholar 

  • Oh SW, Mukhopadhyay A, Dixit BL, Raha T, Green MR, Tissenbaum HA (2006) Identification of direct DAF-16 targets controlling longevity, metabolism and diapause by chromatin immunoprecipitation. Nat Genet 38:251–257

    Article  PubMed  Google Scholar 

  • Popiel I, Vasquez EM (1991) Cryopreservation of Steinernema carpocapsae and Heterorhabditis bacteriophora. J Nematol 23:432–437

    PubMed  CAS  Google Scholar 

  • Qiu X, Han R, Yan X, Liu M, Cao L, Yoshiga T, Kondo E (2009) Identification and characterization of a novel gene involved in the trans-specific nematicidal activity of Photorhabdus luminescens LN2. Appl Environ Microbiol 75:4221–4223

    Article  PubMed  CAS  Google Scholar 

  • Rockman MV, Kruglyak L (2008) Breeding designs for recombinant inbred advanced intercross lines. Genetics 179:1069–1078

    Article  PubMed  Google Scholar 

  • Roy PJ, Stuart JM, Lund J, Kim SK (2002) Chromosomal clustering of muscle-expressed genes in Caenorhabditis elegans. Nature 418:975–979

    PubMed  CAS  Google Scholar 

  • Somvanshi VS, Kaufmann-Daszczuk B, Kim KS, Mallon S, Ciche TA (2010) Photorhabdus phase variants express a novel fimbrial locus, mad, essential for symbiosis. Mol Microbiol

  • Stanke M, Waack S (2003) Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics 19(Suppl 2):ii215–ii225

    Article  PubMed  Google Scholar 

  • Stanke M, Diekhans M, Baertsch R, Haussler D (2008) Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24:637–644

    Article  PubMed  CAS  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  PubMed  CAS  Google Scholar 

  • Valouev A, Ichikawa J, Tonthat T, Stuart J, Ranade S, Peckham H, Zeng K, Malek JA, Costa G, McKernan K et al (2008) A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. Genome Res 18:1051–1063

    Article  PubMed  CAS  Google Scholar 

  • Waterfield NR, Ciche T, Clarke D (2009) Photorhabdus and a host of hosts. Annu Rev Microbiol 63:557–574

    Article  PubMed  CAS  Google Scholar 

  • Watson RJ, Joyce SA, Spencer GV, Clarke DJ (2005) The exbD gene of Photorhabdus temperata is required for full virulence in insects and symbiosis with the nematode Heterorhabditis. Mol Microbiol 56:763–773

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Ma C, Delohery T, Nasipak B, Foat BC, Bounoutas A, Bussemaker HJ, Kim SK, Chalfie M (2002) Identification of genes expressed in C. elegans touch receptor neurons. Nature 418:331–335

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Kaya HK, Heungens K, Goodrich-Blair H (2002) Response of ants to a deterrent factor(s) produced by the symbiotic bacteria of entomopathogenic nematodes. Appl Environ Microbiol 68:6202–6209

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Ren L, Meng Q, Li Y, Yu Y, Yu J (2010) The next-generation sequencing technology and application. Protein Cell 1:520–536

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul W. Sternberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartz, H.T., Antoshechkin, I. & Sternberg, P.W. Applications of high-throughput sequencing to symbiotic nematodes of the genus Heterorhabditis . Symbiosis 55, 111–118 (2011). https://doi.org/10.1007/s13199-012-0151-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-012-0151-9

Keywords

Navigation