Skip to main content
Log in

Broadband dielectric properties of honey: effects of temperature

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Dielectric properties of jujube honey were investigated at 298–358 K by broadband dielectric measurements. Four relaxation processes were observed and analyzed, which are caused by long range correlation of density fluctuation, cooperative motions of molecules, rotational polarization of bound water and collective reorientation of free water, respectively. The results of temperature dependence of dielectric parameters show that with increasing temperature, the interaction among the molecules e.g. water, fructose and glucose molecules etc. weaken, and the honey gradually forms a complete sugar solution. At a given temperature, the penetration depth at 27 MHz is much greater than that at 915 MHz and 2.45 GHz. And based on the calculated penetration depth, dielectric heating at 27 MHz seems to has more advantages for large volume of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmed J, Prabhu ST, Raghavan GSV, Ngadi M (2007) Physico-chemical, rheological, calorimetric and dielectric behavior of selected Indian honey. J Food Eng 79:1207–1213

    Article  CAS  Google Scholar 

  • Calay RK, Newborough M, Probert D, Calay PS (2010) Predictive equations for the dielectric properties of foods. Int J Food Sci Technol 29:699–713

    Article  Google Scholar 

  • da Silva PM, Gauche C, Gonzaga LV, Costa AC, Fett R (2016) Honey: chemical composition, stability and authenticity. Food Chem 196:309–323

    Article  Google Scholar 

  • Escriche I, Visquert M, Juan-Borrás M, Fito P (2009) Influence of simulated industrial thermal treatments on the volatile fractions of different varieties of honey. Food Chem 112:329–338

    Article  CAS  Google Scholar 

  • Fennema OR (1996) Food chemistry, 3rd edn. Marcel Dekker, Inc., New York, pp 9–22

    Google Scholar 

  • Gleiter RA, Horn H, Isengard HD (2006) Influence of type and state of crystallisation on the water activity of honey. Food Chem 96:441–445

    Article  CAS  Google Scholar 

  • Gómezdíaz D, Navaza JM, Quintánsriveiro LC (2009) Effect of temperature on the viscosity of honey. Int J Food Prop 12:396–404

    Article  Google Scholar 

  • Guo W, Zhu X, Liu Y, Zhuang H (2010) Sugar and water contents of honey with dielectric property sensing. J Food Eng 97:275–281

    Article  CAS  Google Scholar 

  • Guo W, Liu Y, Zhu X, Wang S (2011) Temperature-dependent dielectric properties of honey associated with dielectric heating. J Food Eng 102:209–216

    Article  Google Scholar 

  • Hippel V, Robert A (1954) Dielectrics and waves. Wiley, New York

    Google Scholar 

  • Hwang Y-H, Kwon H-J, Seo J-A, Shin D-M, Ha J-H, Kim H-K (2013) Relaxation processes in disaccharide sugar glasses. AIP Conf Proc 1518:38

    Article  CAS  Google Scholar 

  • Kaminski K, Kaminska E, Wlodarczyk P, Pawlus S, Kimla D, Kasprzycka A, Paluch M, Ziolo J, Szeja W, Ngai KL (2008) Dielectric studies on mobility of the glycosidic linkage in seven disaccharides. J Phys Chem B 112:12816–12823

    Article  CAS  Google Scholar 

  • Kaminski K, Kaminska E, Wlodarczyk P, Adrjanowicz K, Wojnarowska Z, Grzybowska K, Paluch M (2010) Dynamics of the slow mode in the family of six-carbon monosaccharides monitored by dielectric spectroscopy. J Phys Condens Matter 22:365103

    Article  CAS  Google Scholar 

  • Lazaridou A, Biliaderis CG, Bacandritsos N, Sabatini AG (2004) Composition, thermal and rheological behaviour of selected Greek honeys. J Food Eng 64:9–21

    Article  Google Scholar 

  • Moran GR, Jeffrey KR, Thomas JM, Stevens JR (2000) A dielectric analysis of liquid and glassy solid glucose/water solutions. Carbohydr Res 328:573

    Article  CAS  Google Scholar 

  • Noel TR, Ring SG, Whittam MA (1992) Dielectric relaxations of small carbohydrate molecules in the liquid and glassy states. J Phys Chem 96:5662–5667

    Article  CAS  Google Scholar 

  • Noel TR, Parker R, Ring SG (1996) A comparative study of the dielectric relaxation behaviour of glucose, maltose, and their mixtures with water in the liquid and glassy states. Carbohydr Res 282:193–206

    Article  CAS  Google Scholar 

  • Schiffmann RF (1995) Microwave and dielectric drying. In: Mujumdar AS (ed) Handbook of industrial drying. Marcel Dekker, New York

    Google Scholar 

  • Schwan HP (1963) Determination of biological impedances. In: Nastuk WL (ed) Physical techniques in biological research. Academic Press, New York

    Google Scholar 

  • Shinyashiki N, Shinohara M, Iwata Y, Goto T, Oyama M, Suzuki S, Yamamoto W, Yagihara S, Inoue T, Oyaizu S, Yamamoto S, Ngai KL, Capaccioli S (2008) The glass transition and dielectric secondary relaxation of fructose–water mixtures. J Phys Chem B 112:15470–15477

    Article  CAS  Google Scholar 

  • Shiraga K, Suzuki T, Kondo N, Tajima T, Nakamura M, Togo H, Hirata A, Ajito K, Ogawa Y (2015) Broadband dielectric spectroscopy of glucose aqueous solution: analysis of the hydration state and the hydrogen bond network. J Chem Phys 142:234504

    Article  Google Scholar 

  • Sidebottom DL (2007) Ultraslow relaxation of hydrogen-bonded dynamic clusters in glass-forming aqueous glucose solutions: a light scattering study. Phys Rev E Stat Nonlinear Soft Matter Phys 76:011505

    Article  CAS  Google Scholar 

  • Singh LP, Alegria A, Colmenero J (2011) Broadband dielectric spectroscopy and calorimetric investigations of d-lyxose. Carbohydr Res 346:2165–2172

    Article  CAS  Google Scholar 

  • Tosi E, Ciappini M, Re E, Lucero H (2002) Honey thermal tratment effects on hydroxymethylfurfural content. Food Chem 77:71–74

    Article  CAS  Google Scholar 

  • Turhan I, Tetik N, Karhan M, Gurel F, Reyhan Tavukcuoglu H (2008) Quality of honeys influenced by thermal treatment. LWT Food Sci Technol 41:1396–1399

    Article  CAS  Google Scholar 

  • Wang S, Tang J, Johnson JA, Mitcham E, Hansen JD, Hallman G, Drake SR, Wang Y (2003) Dielectric properties of fruits and insect pests as related to radio frequency and microwave treatments. Biosyst Eng 85:201–212

    Article  Google Scholar 

  • Wang S, Monzon M, Johnson JA, Mitcham EJ, Tang J (2007) Industrial-scale radio frequency treatments for insect control in walnuts. Postharvest Biol Technol 45:240–246

    Article  Google Scholar 

  • Yamamoto W, Sasaki K, Kita R, Yagihara S, Shinyashiki N (2015) Dielectric study on temperature–concentration superposition of liquid to glass in fructose–water mixtures. J Mol Liq 206:39–46

    Article  CAS  Google Scholar 

  • Yang M, Gao Y, Liu Y, Fan X, Zhao K, Zhao S (2018) Broadband dielectric properties of honey: effect of water content. J Agric Sci Technol 20:685–693

    Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Shaojie Zhao of Beijing Normal University for providing the facilities for high-frequency dielectric measurements. This work was financially supported by the National Natural Science Foundation of China (Nos. 21673002, 21473012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kongshuang Zhao.

Ethics declarations

Conflict of interest

Tha authors declare that there is no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yuan Liu and Man Yang contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Yang, M., Gao, Y. et al. Broadband dielectric properties of honey: effects of temperature. J Food Sci Technol 57, 1656–1660 (2020). https://doi.org/10.1007/s13197-019-04198-3

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-019-04198-3

Keywords

Navigation