Skip to main content
Log in

Disparate dynamic viscoelastic responses of wheat flour doughs coated with different oils for preventing water evaporation during time sweeps and their mechanisms decoupled

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Various non-volatile oils are currently applied in order to prevent water evaporation from exposed surface of dough during oscillatory measurements. A systemic understanding of their effectiveness in controlling water loss and ensuring accuracy of rheological measurements is necessary. In this work, three kinds of coating oils (vaseline, dimethyl silicone oil and low viscosity silicone oil) were selected to minimize water evaporation from dough of 37%, 42% and 47% water content subjected to time sweep tests under oscillatory mode. Evolution patterns of the storage modulus, loss modulus and loss factor with time were followed, and the mechanisms responsible for the response patterns were decoupled. Disparate dynamic viscoelastic responses were found for the same dough coated with different oils. Spontaneous de-structuring of dough combined with thixotropic effect contributed to the decrease of dynamic modulus and increase of the loss factor with time. Dynamic vapor sorption tests showed that water evaporation did occur for the dough even coated with non-volatile oils including vaseline. Water evaporation led to an accelerated increase in dynamic modulus with time, while had a very limited impact on loss factor. Oil invasion only played a minor role in the decrease in dynamic modulus. The measured modulus was actually a sum of the positive and negative contributions. Vaseline was observed as an effective coating oil for rheological measurements of dough, especially with high water content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baltsavias A, Jurgens A, van Vliet T (1997) Rheological properties of short doughs at amall deformation. J Cereal Sci 26:289–300

    Article  Google Scholar 

  • Berland S, Launay B (1995) Shear softening and thixotropic properties of wheat flour doughs in dynamic testing at high shear strain. Rheol Acta 34:622–625

    Article  CAS  Google Scholar 

  • Correa MJ, Salinas MV, Carbas B, Ferrero C, Brites C, Puppo MC (2017) Technological quality of dough and breads from commercial algarroba–wheat flour blends. J Food Sci Technol 54(7):2104–2114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crank J (1975) The mathematics of diffusion, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  • Davidou S, Michon C, Thabet IB, Launay B (2008) Influence of shaping and orientation of structures on rheological properties of wheat flour dough measured in dynamic shear and biaxial extension. Cereal Chem 85(3):403–408

    Article  CAS  Google Scholar 

  • Duvarci OC, Yazar G, Kokini JL (2017) The comparison of LAOS behavior of structured food materials (suspensions, emulsions and elastic networks). Trends Food Sci Technol 60:2–11

    Article  CAS  Google Scholar 

  • Edwards NM, Dexter JE, Scanlon MG, Cenkowski S (1999) Relationship of creep-recovery and dynamic oscillatory measurements to durum wheat physical dough properties. Cereal Chem 76(5):638–645

    Article  CAS  Google Scholar 

  • Gabriele D, de Cindio B, D’Antona P (2001) A weak gel model for foods. Rheol Acta 40(2):120–127

    Article  CAS  Google Scholar 

  • Hardt NA, Boom RM, van der Goot AJ (2014) Wheat dough rheology at low water contents and the influence of xylanases. Food Res Int 66:478–484

    Article  CAS  Google Scholar 

  • Hilder MH, van den Tempel M (1971) Diffusivity of water in groundnut oil and paraffin oil. J Appl Chem Biotechnol 21:176–178

    Article  CAS  Google Scholar 

  • Joubert C, Cassagnau P, Choplin L, Michel A (2001) Diffusion of plasticizer in elastomer probed by rheological analysis. J Rheol 46(3):629–650

    Article  CAS  Google Scholar 

  • Karathanos VT, Kostaropoulos AE (1995) Diffusion and equilibrium of water in dough/raisin mixtures. J Food Eng 25:113–121

    Article  Google Scholar 

  • Katyal M, Virdi AS, Singh N, Kaur A, Rana JC, Kumari J (2018) Diversity in protein profiling, pasting, empirical and dynamic dough rheological properties of meal from different durum wheat accessions. J Food Sci Technol 55(4):1256–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khatkar BS, Schofield JD (2002) Dynamic rheology of wheat flour dough. I. Non-linear viscoelastic behaviour. J Sci Food Agric 82:827–829

    Article  CAS  Google Scholar 

  • Kim Y-R, Cornillon P, Campanella OH, Stroshine RL, Lee S, Shim J-Y (2008) Small and large deformation rheology for hard wheat flour dough as influenced by mixing and resting. J Food Sci 73(1):E1–E8

    Article  CAS  PubMed  Google Scholar 

  • Lind I, Rask C (1991) Sorption isotherms of mixed minced meat, dough, and bread crust. J Food Eng 14:303–315

    Article  Google Scholar 

  • Liotier P-J, Place S, Chalamet Y, Majeste J-C (2010) New rheological method to measure diffusion coefficient of volatile liquids: application to butylmethacrylate in molten polyethylene matrix. J Appl Polym Sci 118:759–763

    CAS  Google Scholar 

  • Lopes-Da-Solva JA, Santos DMJ, Freitas A, Brites C, Gil AM (2007) Rheological and nuclear magnetic resonance (NMR) study of the hydration and heating of undeveloped wheat doughs. J Agric Food Chem 55:5636–5644

    Article  CAS  Google Scholar 

  • Mao B, Divoux T, Snabre P (2016) Normal force controlled rheology applied to agar gelation. J Rheol 66(3):473–489

    Article  CAS  Google Scholar 

  • Masi P, Cavella S, Sepe M (1998) Characterization of dynamic viscoelastic behavior of wheat flour doughs at different moisture contents. Cereal Chem 75(4):428–432

    Article  CAS  Google Scholar 

  • Meerts M, Cardinaels R, Oosterlinck F, Courtin CM, Moldenaers P (2017) The impact of water content and mixing time on the linear and non-linear rheology of wheat flour dough. Food Biophys 12:151–163

    Article  Google Scholar 

  • Moreira R, Chenlo F, Arufe S, Rubinos SN (2015) Physicochemical characterization of white, yellow and purple maize flours and rheological characterization of their doughs. J Food Sci Technol 52(12):7954–7963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsson E, Hedenqvist MS, Johansson C, Jarnstrom L (2013) Influence of citric acid and curing on moisture sorption, diffusion and permeability of starch films. Carbohydr Polym 94:765–772

    Article  CAS  PubMed  Google Scholar 

  • Sato J, Breedveld V (2005) Evaporation blocker for cone-plate rheometry of volatile samples. Appl Rheol 15:390–397

    Article  CAS  Google Scholar 

  • Schiedt B, Baumann A, Conde-Petit B, Vilgisi TA (2013) Short- and long-range interactions governing the viscoelastic properties during wheat dough and model dough development. J Text Stud 44:317–332

    Article  Google Scholar 

  • Singh S, Singh N (2013) Relationship of polymeric proteins and empirical dough rheology with dynamic rheology of dough and gluten from different wheat varieties. Food Hydrocol 33:342–348

    Article  CAS  Google Scholar 

  • Singh S, Singh N, MacRitchie F (2011) Relationship of polymeric proteins with pasting, gel dynamic- and dough. Food Hydrocol 25:19–24

    Article  CAS  Google Scholar 

  • Smith JR, Smith TL, Tschoegl NW (1970) Rheological properties of wheat flour doughs III: dynamic shear modulus and its dependence on amplitude, frequency, and dough composition. Rheol Acta 9(2):239–252

    Article  Google Scholar 

  • Sofou S, Muliawan EB, Hatzikiriakos SG, Mitsoulis E (2008) Rheological characterization and constitutive modeling of bread dough. Rheol Acta 47(4):369–381

    Article  CAS  Google Scholar 

  • Szczesniak AS, Loh J, Wesley R (1983) Effect of moisture transfer on dynamic viscoelastic parameters of wheat flour/water systems. J Rheol 27(6):537–556

    Article  Google Scholar 

  • Tietze S, Jekle M, Becker T (2017) Development of wheat dough by means of shearing. J Food Eng 201:1–8

    Article  Google Scholar 

  • van Bockstaele F, de Leyn I, Eeckhout M, Dewettinckb K (2008) Rheological properties of wheat flour dough and their relationship with bread volume. II. Dynamic oscillation measurements. Cereal Chem 85(6):762–768

    Article  CAS  Google Scholar 

  • Watanabe A, Larsson H, Eliasson A-C (2002) Effect of physical state of nonpolar lipids on rheology and microstructure of gluten-starch and wheat flour doughs. Cereal Chem 79(2):203–209

    Article  CAS  Google Scholar 

  • Wilke CR, Chang P (1955) Correlation of diffusion coefficients in dilute solutions. AIChE J 1:264–270

    Article  CAS  Google Scholar 

  • Zieverink M, de Rijke E, de Kruijf K, de Kok P (2009) Diffusivity and solubility of water in palm oil. In: 7th Euro Fed Lipid Congress, Poster (PHYS-004) Graz, Austria

Download references

Acknowledgements

We would like to acknowledge the financial support from Henan Basic and Advanced Technology Research Program (162300410255); Henan Transformation Project of Production, School and Research Achievements (2107000023); and Zhengzhou Science and Technology Major Project (174PZDZX576).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Li, W., Zhang, H. et al. Disparate dynamic viscoelastic responses of wheat flour doughs coated with different oils for preventing water evaporation during time sweeps and their mechanisms decoupled. J Food Sci Technol 56, 462–472 (2019). https://doi.org/10.1007/s13197-018-3508-0

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-018-3508-0

Keywords

Navigation