Skip to main content
Log in

Antioxidative and bioprotective effect of lactic acid bacteria on postharvest strawberry: intact and cell lysates

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

The present study evaluates the antioxidative and the protective effect of the intact and cell lysates of Lactobacillus pentosus on the postharvest strawberry during 10 days of storage at 4 °C. The antioxidant activities of the intact and cells lysates were measured by the inhibition of the lipid perioxidation of β-carotene/linoleic acid system and the inhibition of the ABTS.+ oxidation systems. Both techniques showed an increase in the antioxidant capacity for the cell lysates. The effect of the spreading intact cells and cell lysates of L.pentosus on the strawberry’s antioxidant capacity and physiochemical properties was compared. The fruit’s antioxidant activity was enhanced slightly after adding the intact cells to reach 40 % by the end of the test, whereas that of the cell lysates was about 45 % all along the test. An increase in total phenol content was found for the cell lysates after 3 days of storage, while a gradual raise was noticed for the intact cells. The lyses bacterial cells enhance the fruit color conservation modestly (10 %) but constantly. The bacterial adding preserved the moisture of the postharvest fruit with a water loss reduction of 58.7 and 39.54 %, respectively for intact and cell lysates. Therefore, the molds and yeasts fruit proliferation was inhibited as well especially after 3 postharvest storage days (p < 0.05). Results suggest the presence of intracellular antioxidant bacterial factors that could be helpful not only in the postharvest fruit quality but also as antioxidant food system source to the human body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • An YH, Friedman RJ (1998) Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J Biomed Mater Res (Appl Biomater) 43:338–348

  • Araújo EA, de Andrade NJ, da Silva LHM, de Carvalho AF, de Sá Silva CA, Ramos AM (2010) Control of microbial adhesion as a strategy for food and bioprocess technology. Food Bioprocess Tech 3(3):321–332

  • Avila M, Hidalgo M, Sanchez-Moreno C, Pelaez Teresa Requena C, de Pascual-Teresa S (2009) Bioconversion of anthocyanin glycosides by Bifidobacteria and Lactobacillus. Food Res Int 42:1453–1461

    Article  CAS  Google Scholar 

  • Ayrani E, Tun C (2003) A method for the measurement of oxygen permeability and the developpement of edible films to reduce the rate of oxidative reactions in fresh foods. Food Chem 80:423–431

    Article  Google Scholar 

  • Briandet R, Herry J, Bellon-Fontaine M (2001) Determination of the van der Waals, electron donor and electron acceptor surface tension components of static Gram-positive microbial biofilms. Colloids Surf B 21(4):299–310

    Article  CAS  Google Scholar 

  • Cao GH, Russell RM, Lischner N, Prior RL (1998) Serum antioxidant capacity is increased by consumption of strawberries, spinach, red wine or vitamin C in elderly women. J Nutr 128:2383–2390

    CAS  Google Scholar 

  • Dalie DKD, Deschamps AM, Richard-Forget F (2010) Lactic acid bacteria—potential for control of mould growth and mycotoxins. Food Control 21:370–380

    Article  CAS  Google Scholar 

  • Davey MW, Van Montagu M, Inze D, Sanmartin M, Kanellis A, Smirnoff N, Benzie IJJ, Strain JJ, Favell D, Fletcher J (2000) Plant l-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J Sci Food Agric 80:825–860

    Article  CAS  Google Scholar 

  • De Man JC, Rogosa M, Shape ME (1960) A medium of cultivation for Lactobacillus. J Appl Bacteriol 23:130–135

    Article  Google Scholar 

  • Droby S, Cohen L, Daus A, Weiss B, Horev B, Chalutz H, Keren-Tzur M, Shachnai A (1998) Commercial testing of aspire: a yeast preparation for the biological control of postharvest decay of citrus. Biol Control 12:97–101

    Article  Google Scholar 

  • Essghaier B, Fardeau ML, Cayol JL, Hajlaoui MR, Boudabous A, Jijakli H, Sadfi-Zouaoui N (2009) Biological control of grey mould in strawberry fruits by halophilic bacteria. J Appl Microbiol 106:833–846

    Article  CAS  Google Scholar 

  • Fan Q, Tian SP (2000) Postharvest biological control of Rhizopus rot of nectarine fruits by Pichia membranefaciens. Plant Dis 84:1212–1216

    Article  Google Scholar 

  • Francis FJ (1980) Colour quality evaluation of horticultural crops. Hortscience 15:58–59

  • Garci E, Barrett DM (2002) Preservative treatments of fresh-cut fruits and vegetables. In: Lamikana O (ed) Fresh-cut fruits and vegetables: science, technology and marker. CRC Press, Boca Raton, pp 267–304

    Google Scholar 

  • Gourama H (1997) Inhibition of growth and mycotoxin production of Penicillium by Lactobacillus species. Lebensm-Wiss u-Technol 30:279–283

    Article  CAS  Google Scholar 

  • Heinonen IM, Meyer AS, Frankel EN (1998) Antioxidant activity of berry phenolics on human low-density lipoprotein and liposome oxidation. J Agric Food Chem 46:4107–4112

    Article  CAS  Google Scholar 

  • Heo HJ, Lee CY (2005) Strawberry and its anthocyanins reduce oxidative stress-induced apoptosis in PC12 cells. J Agric Food Chem 53:1984–1989

    Article  CAS  Google Scholar 

  • Hilbert LR, Bagge-Raven D, Kold J, Gram L (2003) Influence of surface roughness of stainless steel on microbial adhesion and corrosion resistance. Int Biodeterior Biodegrad 52:175–185

    Article  CAS  Google Scholar 

  • Hunter T, Brent KL, Carter GA (1987) Effect of fungicide spray regimes on incidence of Botrytis cinerea. Ann Appl Biol 110:515–525

    Article  CAS  Google Scholar 

  • Jafarei P, Tajabadi EM (2011) Lactobacillus acidophylus cell structure and application. Afr J Microbiol 5(24):4033–4042

  • Jayaprakasha GK, Singh RP, Sakariah KK (2001) Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chem 73:285–290

    Article  CAS  Google Scholar 

  • Jetter R, Kunst L, Samuels AL (2006) Composition of plant cuticular waxes. In: Riederer M, Muller C (eds) Biology of the plant cuticle. Blackwell, Sheffield, pp 145–181

    Chapter  Google Scholar 

  • Kachouri F, Hamdi M (2004) Enhancement of polyphenols in oliveoil by contact with fermented olive mill wastewater by Lactobacillus plantarum. Process Biochem 39:841–845

    Article  CAS  Google Scholar 

  • Kaizu H, Sasaki M, Nakajima H, Suzuki Y (1993) Effect of antioxidative lactic acid bacteria on rats fed a diet deficient in vitamin E. J Dairy Sci 76(9):2493–2499

  • Karamanos NK, Panagiotopoulou HS, Syrokou A, Frangides C, Hjerpe A, Dimitrakopoulos G, Anastassiou ED (1995) Identity of macromolecules present in the extracellular slime layer of Staphylococcus epidermidis. Biochimie 77:217–224

    Article  CAS  Google Scholar 

  • Kodali VP, Sen R (2008) Antioxidant and free radical scavenging activities of an exopolysaccharide from a probiotic bacterium. Biotechnol J 3:245–251

    Article  CAS  Google Scholar 

  • Kovach J, Petzoldt R, Harman GE (2000) Use of honey bees and bumble bees to disseminate Trichoderma harzianum 1295–22 to strawberries for botrytis control. Biol Control 18:235–242

    Article  Google Scholar 

  • Labuza TP (1975) Sorption phenomena in foods: theoretical and practical aspects. In: Rha CK (ed) Theory determination and control of physical properties of food materials. Reidel D, Holland, Dordrecht, pp 197–219

    Chapter  Google Scholar 

  • Lachmana J, Hamouzb K, Šulca M, Orsáka M, Piveca V, Hejtmánkováa A, Dvořákb P, Čeplc J (2009) Cultivar differences of total anthocyanins and anthocyanidins in red and purple-fleshed potatoes and their relation to antioxidant activity. Food Chem 114(3):836–843

  • Lapsin R, Pircl S (1995) Rheology of industrial polysaccharides, theory and application. Blackie, London

    Book  Google Scholar 

  • Laurila E, Ahvenainem R (2002) Minimal processing in practice: fresh fruits and vegetables. In: Ohlsson T, Bengtsson N (eds) Minimal processing technologies in the food industry. Woodhesd Publishing Limited, Cambridge

    Google Scholar 

  • Lin MY, Yen CL (1999) Antioxidative ability of lactic acid bacteria. J Agric Food Chem 47:1460–1466

    Article  CAS  Google Scholar 

  • Liu M, Li XQ, Weber C, Lee CY, Brown J, Liu RH (2002) Antioxidant and antiproliferative activities of raspberries. J Agric Food Chem 51:2926–2930

    Article  Google Scholar 

  • Marques LLR, Ceri H, Manfio GP, Reid DM, Olson ME (2002) Characteristics of biofilm formation by Xylella pestidiosa “in vitro”. Plant Dis 86:633–638

    Article  Google Scholar 

  • McGuire RG (1992) Reporting of objective color measurements. HortSci 27:1254–1255

    Google Scholar 

  • Meyers KJ, Watkins CB, Pritts MP, Liu RH (2003) Antioxidant and antiproliferative activities of strawberries. J Agric Food Chem 51(23):6887–6892

  • Nikolaev YA, Plakunov VK (2007) Biofilm—city of microbes or an analogue of multicellular organisms? Microbiology 76(2):125–138

    Article  CAS  Google Scholar 

  • Ou CC, Lu TM, Tsai JJ, Yen JH, Chen HW, Lin MY (2009) Antioxidative effect of lactic acid bacteria: intact cells vs. Intracellular extracts. J Food Drug Anal 3:209–216

    Google Scholar 

  • Peng G, Sutton JC (1991) Evaluation of microorganism for biocontrol of Botrytis cinerea in strawberry. Can J Plant Pathol 13:247–257

    Article  Google Scholar 

  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Bio Med 26:1231–1237

    Article  CAS  Google Scholar 

  • Rocha AMCN, Morais AMMB (2003) Shelf life of minimally processed apple (cv. Jonagored) determined by color changes. Food Control 14:13–20

    Article  CAS  Google Scholar 

  • Rodríguez H, de las Rivas B, Muñoz R, Gómez-Cordovés C (2008a) Characterization of tannase activity in cell-free extracts of Lactobacillus plantarum CECT 748T. Int J Food Microbiol 121:92–98

  • Rodriguez H, Landete JM, Rivas BDL, Munoz R (2008b) Metabolism of food phenolic acids by Lactobacillus plantarum CECT 748T. Food Chem 107(4):1393–1398

    Article  CAS  Google Scholar 

  • Rouse S, Harnett D, Vaughan A, van Sinderen D (2008) Lactic acid bacteria with potential to eliminate fungal spoilage in foods. J Appl Microbiol 104:915–923

  • Roy U, Batish VK, Grover S, Neelakantan S (1996) Production of antifungal substance by Lactococcus lactis subsp. lactis CHD-28.3. Int J Food Microbiol 32:27–34

  • Saide JA, Gilliland SE (2005) Antioxidative activity of lactobacilli measured by oxygen radical absorbance capacity. J Dairy Sci 88:1352–1357

    Article  CAS  Google Scholar 

  • Sallato BV, Torres R, Zoffoli JP, Latorre BA (2007) Effect of boscalid on postharvest decay of strawberry caused by Botrytis cinerea and Rhizopus stolonifer. Span J Agric Res 5:67–78

    Article  Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analyses of total phenols and other oxidation substrates and antioxidants by means of Folin- Ciocalteu reagent. Methods Enzymol 299:152–178

    Article  CAS  Google Scholar 

  • Trias R, Baneras L, Montesinos E, Badosa E (2008) Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi. Int Microbiol 11:231–236

    CAS  Google Scholar 

  • Van den Berg R, Haenen GRMM, Van den Berg H, Bast A (1999) Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem 66:511–517

    Article  Google Scholar 

  • Van der Steen C, Jacxsens L, Devlieghere F, Debevere J (2002) Combining high oxygen atmospheres with low oxygen modified atmosphere packaging to improve the keeping quality of strawberries and raspberries. Postharvest Biol Technol 26:49–58

  • Wang H, Cao GH, Prior RL (1997) Oxygen radical absorbing capacity of anthocyanins. J Agric Food Chem 45:304–309

    Article  CAS  Google Scholar 

  • Wang SY, Feng RT, Lu YJ, Bowman L, Ding M (2005) Inhibitory effect on activator protein-1, nuclear factor-kappa B, and cell transformation by extracts of strawberries (Fragaria×ananassa Duch.). J Agric Food Chem 53:4187–4193

    Article  CAS  Google Scholar 

  • Wang YS, Tian SP, Xu Y, Qin GZ, Yao HJ (2004) Changes in the activities of pro- and anti-oxidant enzymes in peach fruit inoculated with Cryptococcus laurentii or Penicillium expansum at 0 or 20 °C. Postharvest Biol Technol 34:21–28

    Article  CAS  Google Scholar 

  • Xu X, Qin G, Tian S (2008) Effect of microbial biocontrol agents on alleviating oxidative damage of peach fruit subjected to fungal pathogen. Int J Food Microbiol 126:153–158

    Article  CAS  Google Scholar 

  • Zhang H, Ma L, Wang L, Jiang S, Dong Y, Zheng X (2008) Biocontrol of gray mold decay in peach fruit by integration of antagonistic yeast with salicylic acid and their effects on postharvest quality parameters. Biol Control 47:60–65

    Article  Google Scholar 

  • Zhao T, Doyle MP, Zhao P (2004) Control of Listeria monocytogenes in a biofilm by competitive-exclusion microorganisms. Appl Environ Microbiol 70:3996–4003

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moktar Hamdi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kraiem, M., Kachouri, F., Ghoul, M. et al. Antioxidative and bioprotective effect of lactic acid bacteria on postharvest strawberry: intact and cell lysates. J Food Sci Technol 52, 7345–7352 (2015). https://doi.org/10.1007/s13197-015-1708-4

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-015-1708-4

Keywords

Navigation