Skip to main content
Log in

Moisture sorption isotherms and thermodynamic properties of mexican mennonite-style cheese

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Moisture adsorption isotherms of fresh and ripened Mexican Mennonite-style cheese were investigated using the static gravimetric method at 4, 8, and 12 °C in a water activity range (aw) of 0.08–0.96. These isotherms were modeled using GAB, BET, Oswin and Halsey equations through weighed non-linear regression. All isotherms were sigmoid in shape, showing a type II BET isotherm, and the data were best described by GAB model. GAB model coefficients revealed that water adsorption by cheese matrix is a multilayer process characterized by molecules that are strongly bound in the monolayer and molecules that are slightly structured in a multilayer. Using the GAB model, it was possible to estimate thermodynamic functions (net isosteric heat, differential entropy, integral enthalpy and entropy, and enthalpy-entropy compensation) as function of moisture content. For both samples, the isosteric heat and differential entropy decreased with moisture content in exponential fashion. The integral enthalpy gradually decreased with increasing moisture content after reached a maximum value, while the integral entropy decreased with increasing moisture content after reached a minimum value. A linear compensation was found between integral enthalpy and entropy suggesting enthalpy controlled adsorption. Determination of moisture content and aw relationship yields to important information of controlling the ripening, drying and storage operations as well as understanding of the water state within a cheese matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

A:

constant of the eq. (8) (J/mol).

Am :

area that occupies one single water molecule at monolayer (1.06 × 10−19 m2).

aw :

water activity (dimensionless).

a Oswin , b :

Oswin parameters (dimensionless).

a Halsey , r :

Halsey parameter(dimensionless).

CG :

GAB parameter (dimensionless).

CB :

BET parameter (dimensionless).

CG,o :

pre-exponential factor in CG (dimensionless)

E:

mean relative percentage deviation modulus (%).

H1 :

molar enthalpy of sorbed molecules in the monolayer (kJ/mol).

Hm :

molar enthalpy of sorbed molecules in the multilayer (kJ/mol).

HL :

molar enthalpy of condensation of bulk liquid water (kJ/mol).

k:

Boltzmann constant (1.38 × 10−23 J/K).

kG,o :

pre-expontial factor in kG (diomensionless).

kG :

GAB parameter (dimensionless).

m:

moisture content of cheese sample (g of water/g of solid).

MSI:

moisture sorption isotherm.

me :

experimental moisture content.

mp :

predicted moisture content.

mo :

pre-exponential factor in mo,G (dimensionless).

mo,G :

monolayer moisture content obtained with GAB eq. (g of water/g of solid).

mo,B :

monolayer moisture content with BET eq. (g of water/g of solid).

N:

number of experiments.

n:

number of isotherms.

R:

universal gas constant (8.32 J/mol K).

R2 :

coefficient of determination.

SE:

standard error

T:

absolute temperature (K).

TB :

isokinetic temperature (K).

Thm :

harmonic temperature.

∆Hk :

difference in enthalpy between bulk liquid water and multilayer (kJ/mol).

∆HC :

difference in enthalpy between monolayer and multilayer (kJ/mol).

∆Hm :

constant to express temperature dependence of mo,GAB (kJ/mol).

ΔHis :

isosteric enthalpy of sorption (J/mol).

ΔHin :

integral enthalpy of sorption (J/mol).

ΔSis :

isosteric entropy of sorption (J/mol K).

ΔSin :

integral entropy of sorption (J/mol K).

Φ:

spreading pressue (J/m2).

References

  • Alam SMd, Singh A (2011) Sorption isotherm characteristics of aonla flakes. J Food Sci Technol 48:335–343

    Article  Google Scholar 

  • Al-Muhtaseb AH, McMinn WAM, Magee TRA (2002) Moisture sorption isotherm characteristics of food products: a review. Food Bioprod Process 80:118–128

    Article  CAS  Google Scholar 

  • Arslan N, Togrul H (2006) The fitting of various models to water sorption isotherms of tea stored in a chamber under controlled temperature and humidity. J Stored Prod Res 42:112–135

    Article  CAS  Google Scholar 

  • Aviara NA, Ajibola OO (2002) Thermodynamics of moisture sorption in melon seed and cassava. J Food Eng 55:107–113

    Article  Google Scholar 

  • Basu S, Shivhare US, Muley S (2011) Moisture adsorption isotherms and glass transition temperature pf pectin. J Food Sci Technol. doi:10.1007/s13197-011-0327-y

  • Bell LN, Labuza TP (2000) Moisture sorption: practical aspects of isotherm measurement and use. Eagan Press New York, NY

    Google Scholar 

  • Benado AL, Rizvi SSH (1985) Thermodynamic properties of water on rice as calculated from reversible and irreversible isotherms. J Food Sci 50:101–105

    Article  Google Scholar 

  • Dalgic A, Pekmez H, Belibagli K (2011) Effect of drying methods on the moisture sorption isotherms and thermodynamic properties of mint leaves. J Food Sci Technol. doi:10.1007/s13197-011-0302-7

  • Duggan E, Noronha N, O’riordan ED, O’sullivan M (2008) Effect of resistant starch on the water binding properties of imitation cheese. J Food Eng 84:108–115

    Article  CAS  Google Scholar 

  • Fasina OO (2006) Thermodynamic properties of sweetpotato. J Food Eng 75:149–155

    Article  Google Scholar 

  • Fasina OO, Ajibola OO, Tyler RT (1999) Thermodynamics of moisture sorption in winged bean seed and gari. J Food Process Eng 22:405–418

    Article  Google Scholar 

  • García-Pérez JV, Cárcel JA, Clemente G, Mulet A (2008) Water sorption isotherms for lemon peel at different temperatures and isosteric heats. LWT- Food Sci Technol 41:18–25

    Article  Google Scholar 

  • Goula AM, Karapantsios TD, Achilias DS, Adamopoulos KG (2008) Water sorption isotherms and glass transition temperature of spray dried tomato pulp. J Food Eng 85:73–83

    Article  Google Scholar 

  • Guinee TP (2002) The functionality of cheese as an ingredient: a review. Aust J Dairy Technol 57(2):79–91

    Google Scholar 

  • Jain SK, Verma RC, Sharma GP, Jain HK (2010) Studies on moisture sorption isotherms for osmotically dehydrated papaya cubes and verification of selected models. J Food Sci Technol 47:343–346

    Article  CAS  Google Scholar 

  • Jena S, Das H (2011) Moisture sorption studies on vacuum dried coconut presscake. J Food Sci Technol. doi:10.1007/s13197-011-0306-3

  • Kaya S, Kahyaoglu T (2006) Influence of dehulling and roasting process on the thermodynamics of moisture adsorption in sesame seed. J Food Eng 76:139–147

    Article  Google Scholar 

  • Kaya S, Kahyaoglu T (2007) Moisture sorption and thermodynamic properties of safflower petals and tarragon. J Food Eng 78(2):413–421

    Article  Google Scholar 

  • Kaya S, Oner MD (1996) Water activity and moisture sorption isotherms of Gaziantep cheese. J Food Q 19:121–132

    Article  Google Scholar 

  • Krug RR, Hunter WG, Grieger RA (1976) Enthalpy-entropy compensation.1. Some fundamental statistical problems associated with analysis of Vant Hoff and Arrhenius data. J Phys Chem 80:2335–2341

    Article  CAS  Google Scholar 

  • Liebanes MD, Aragon JM, Palancar MC, Arevalo G, Jimenez D (2006) Equilibrium moisture isotherms of two-phase solid olive oil by-products: adsorption process thermodynamics. Colloid Surf A 282:298–306

    Article  Google Scholar 

  • Madamba PS, Driscoll RH, Buckle KA (1996) Enthalpy-entropy compensation models for sorption and browning of garlic. J Food Eng 28:109–119

    Article  Google Scholar 

  • Maroulis ZB, Tsarni E, Marinos-Kouris D (1988) Application of the GAB model to the moisture sorption isotherms for dried fruits. J Food Eng 7:63–78

    Article  Google Scholar 

  • McMinn WAM, Magee TRA (1997) Moisture sorption characteristics of starch materials. Drying Technol 15:1527–1551

    Article  CAS  Google Scholar 

  • McSweeney PLH, Hayaloglu AA, O’Mahony JA, Bansal N (2006) Perspectives on cheese ripening. Aust J Dairy Technol 61(2):69–77

    CAS  Google Scholar 

  • Moreira R, Chenlo F, Torres MD, Vallejo N (2008) Thermodynamic analysis of experimental sorption isotherms of loquat and quince fruits. J Food Eng 88:514–521

    Article  Google Scholar 

  • Myers AL (2002) Thermodynamics of adsorption in porous materials. Aiche J 48:145–160

    Article  CAS  Google Scholar 

  • Nikitas P (1996) A simple statistical mechanical approach for studying multilayer adsorption: extensions of the BET adsorption isotherm. J Phys Chem 100:15247–15254

    Article  CAS  Google Scholar 

  • Pajonk AS, Saurel R, Andrieu J (2003a) Experimental study and modeling of effective NaCl diffusion coefficients values during Emmental cheese brining. J Food Eng 60:307–313

    Article  Google Scholar 

  • Pajonk AS, Saurel R, Andrieu J, Laurent P, Blanc D (2003b) Heat transfer study and modeling during Emmental ripening. J Food Eng 57:249–255

    Article  Google Scholar 

  • Pradas MM, Sanchez MS, Ferrer GG, Ribelles JLG (2004) Thermodynamics and statistical mechanics of multilayer adsorption. J Chem Phys 121:8524–8531

    Article  Google Scholar 

  • Quirijns EJ, van Boxtel AJB, van Loon WKP, van Straten G (2005a) An improved experimental and regression methodology for sorption isotherms. J Sci Food Agric 85:175–185

    Article  CAS  Google Scholar 

  • Quirijns EJ, van Boxtel AJB, van Loon WKP, van Straten G (2005b) Sorption isotherms, GAB parameters and isosteric heat of sorption. J Sci Food Agric 85:1805–1814

    Article  CAS  Google Scholar 

  • Rakshit M, Moktan B, Hossain SA, Sarkar PK (2011) Moisture sorption characteristics of wadi a legume-based traditional condiment. J Food Sci Technol. doi:10.1007/s13197-011-0491-0

  • Ruegg M (1985) Water in dairy products related to quality, with special reference to cheese. In: Simatos D, Multon JL (eds) Properties of water in food (in relation to quality and stability). NATO Advanced Science Institutes Series/Martinus Nijhoff Publishers, Dordrecht, FRG 603–625

  • Samaniego-Esguerra CM, Boag IF, Robertson GL (1991) Comparison of regression methods for fitting the GAB model to the moisture isotherms of some dried fruit and vegetables. J Food Eng 13:115–133

    Article  Google Scholar 

  • Sanchez ES, SanJuan N, Simal S, Rossello C (1997) Calorimetric techniques applied to the determination of isosteric heat of desorption for potato. J Sci Food Agric 74:57–63

    Article  CAS  Google Scholar 

  • Saurel R, Pajonk A, Andrieu J (2004) Modelling of French Emmental cheese water activity during salting and ripening periods. J Food Eng 63:163–170

    Article  Google Scholar 

  • Simal S, Femenia A, Castell-Palou A, Rossello C (2007) Water desorption thermodynamic properties of pineapple. J Food Eng 80:1293–1301

    Article  Google Scholar 

  • Timmermann EO (2003) Multilayer sorption parameters: BET or GAB values? Colloid Surf A 220:235–260

    Article  CAS  Google Scholar 

  • Tsami E, Maroulis ZB, Marinoskouris D, Saravacos GD (1990) Heat of sorption of water in dried fruits. Int J Food Sci Technol 25:350–359

    Article  CAS  Google Scholar 

  • Tunick MH, Van Hekken DL, Molina-Corral FJ, Tomasula PM, Call J, Luchansky J, Gardea AA (2008) Queso Chihauhua: manufacturing procedures, composition, protein profiles, and microbiology. Int J Dairy Technol 61:62–69

    Article  CAS  Google Scholar 

  • Van Hekken DL, Drake MA, Molina-Corral FJ, Guerrero-Prieto VM, Gardea AA (2006) Mexican Chihuahua cheese: sensory profiles of young cheese. J Dairy Sci 89:3729–3738

    Article  Google Scholar 

  • Van Hekken DL, Tunick MH, Tomasula PM, Molina-Corral FJ, Gardea AA (2007) Mexican Queso Chihuahua: rheology of fresh cheese. Int J Dairy Technol 60:5–12

    Article  Google Scholar 

  • Wang N, Brennan JG (1991) Moisture sorption isotherm characteristics of potatoes at four temperatures. J Food Eng 14:269–287

    Article  Google Scholar 

  • Yadav S, Thiel SW, Kasting GB, Pinto NG (2009) Thermodynamics of water interactions with huma stratum corneum. II. Interpretation via the Guggenheim-Anderson-deBoer isotherm. Chem Eng Sci 64:1480–1487

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been made possible through the financial support of Lacteos Menonitas de Chihuahua SA de CV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio I. Martinez-Monteagudo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez-Monteagudo, S.I., Salais-Fierro, F. Moisture sorption isotherms and thermodynamic properties of mexican mennonite-style cheese. J Food Sci Technol 51, 2393–2403 (2014). https://doi.org/10.1007/s13197-012-0765-1

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-012-0765-1

Keywords

Navigation