Skip to main content

Advertisement

Log in

Population-based case-control study revealed metabolomic biomarkers of suboptimal health status in Chinese population—potential utility for innovative approach by predictive, preventive, and personalized medicine

  • Research
  • Published:
EPMA Journal Aims and scope Submit manuscript

Abstract

Background

Suboptimal health status (SHS) is a subclinical stage of chronic diseases, and the identification of SHS provides an opportunity for the predictive, preventive, and personalized medicine (PPPM) of chronic diseases. Previous studies have reported the associations between metabolic signatures and early signs of chronic diseases.

Methods

This study aimed to detect the metabolic biomarkers for the identification of SHS in a case-control study. SHS questionnaire-25 (SHSQ-25) was used in a population-based health survey to measure the SHS levels of participants. The liquid chromatography-mass spectrometry-based untargeted metabolomics analysis was conducted on plasma samples collected from 50 SHS participants and 50 age- and sex-matched healthy controls.

Results

After adjusting for the confounders, 24 significantly differential metabolites, such as sphingomyelin, sphingosine, sphinganine, progesterone, pregnanolone, and bilirubin, were identified as the candidate biomarkers for SHS. Pathway analysis revealed that sphingolipid metabolism, taurine metabolism, and steroid hormone biosynthesis are the disturbed metabolic pathways related to SHS. A combination of four metabolic biomarkers (sphingosine, pregnanolone, taurolithocholate sulfate, cervonyl carnitine) can distinguish SHS individuals from the controls with a sensitivity of 94.0%, a specificity of 90.0%, and an area under the receiver operating characteristic curve of 0.977.

Conclusion

Plasma metabolites are valuable biomarkers for SHS identification, and meanwhile, SHSQ-25 can be used as an alternative health screening tool in the population-based health survey. SHS-related metabolic disturbances could be detected at the early onset of SHS, and SHS-related metabolites could create a window opportunity for PPPM of chronic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ALP:

alkaline phosphatase

ALT:

alanine transaminase

AST:

aspartate transaminase

AUC:

area under the curve

BMI:

body mass index

BUN:

blood urea nitrogen

CI:

confidence interval

CK-MB:

creatine kinase-MB

CVD:

cardiovascular disease

DBP:

diastolic blood pressure

FDR:

false discovery rate

FPG:

fasting plasma glucose

HC:

hip circumference

HDL-C:

high-density lipoprotein cholesterol

HMDB:

human metabolome database

IPAQ:

international physical activity questionnaire

IQR:

interquartile ranges

KEGG:

Kyoto encyclopedia of genes and genomes

LC-MS:

liquid chromatography-mass spectrometry

LDH:

lactate dehydrogenase

LDL-C:

low-density lipoprotein cholesterol

m/z :

mass-to-change ratio

OPLS-DA:

orthogonal partial least squares projection-discriminant analysis

PCA:

principal component analysis

PPPM:

predictive preventive personalized medicine

QC:

quality control

ROC:

receiver operating characteristic

SBP:

systolic blood pressure

SD:

standard deviation

SHS:

suboptimal health status

SHSQ-25:

suboptimal health status questionnaire-25

TC:

total cholesterol

TG:

triglycerides

T2DM:

type 2 diabetes mellitus

UA:

uric acid

VIP:

variable importance on projection

WC:

waist circumference

WHR:

waist-to-hip ratio

References

  1. Wang W, Yan Y. Suboptimal health: a new health dimension for translational medicine. Clin Transl Med. 2012;1(1):28.

    PubMed  PubMed Central  Google Scholar 

  2. Wang W, Russell A, Yan Y. Global Health Epidemiology Reference G. Traditional Chinese medicine and new concepts of predictive, preventive and personalized medicine in diagnosis and treatment of suboptimal health. EPMA J. 2014;5(1):4.

    PubMed  PubMed Central  Google Scholar 

  3. Adua E, Roberts P, Wang W. Incorporation of suboptimal health status as a potential risk assessment for type II diabetes mellitus: a case-control study in a Ghanaian population. EPMA J. 2017;8(4):345–55.

    PubMed  PubMed Central  Google Scholar 

  4. Anto EO, Roberts P, Coall D, Turpin CA, Adua E, Wang Y, et al. Integration of suboptimal health status evaluation as a criterion for prediction of preeclampsia is strongly recommended for healthcare management in pregnancy: a prospective cohort study in a Ghanaian population. EPMA J. 2019;10(3):211–26.

    PubMed  PubMed Central  Google Scholar 

  5. Kupaev V, Borisov O, Marutina E, Yan YX, Wang W. Integration of suboptimal health status and endothelial dysfunction as a new aspect for risk evaluation of cardiovascular disease. EPMA J. 2016;7(1):19.

    PubMed  PubMed Central  Google Scholar 

  6. Yan Y, Dong J, Liu Y, Yang X, Li M, Shia G, et al. Association of suboptimal health status and cardiovascular risk factors in urban Chinese workers. J Urban Health. 2012;89(2):329–38.

    PubMed  Google Scholar 

  7. Wang Y, Ge S, Yan Y, Wang A, Zhao Z, Yu X, et al. China suboptimal health cohort study: rationale, design and baseline characteristics. J Transl Med. 2016;14(1):291.

    PubMed  PubMed Central  Google Scholar 

  8. Wang Y, Liu X, Qiu J, Wang H, Liu D, Zhao Z, et al. Association between ideal cardiovascular health metrics and suboptimal health status in Chinese population. Sci Rep. 2017;7(1):14975.

    PubMed  PubMed Central  Google Scholar 

  9. Yan YX, Liu YQ, Li M, Hu PF, Guo AM, Yang XH, et al. Development and evaluation of a questionnaire for measuring suboptimal health status in urban Chinese. J Epidemiol. 2009;19(6):333–41.

    PubMed  PubMed Central  Google Scholar 

  10. Ge S, Xu X, Zhang J, Hou H, Wang H, Liu D, et al. Suboptimal health status as an independent risk factor for type 2 diabetes mellitus in a community-based cohort: the China suboptimal health cohort study. EPMA J. 2019;10(1):65–72.

    PubMed  PubMed Central  Google Scholar 

  11. Golubnitschaja O, Costigliola V, EPMA. General report & recommendations in predictive, preventive and personalised medicine 2012: white paper of the European Association for Predictive, Preventive and Personalised Medicine. EPMA J. 2012;3(1):14.

  12. Golubnitschaja O, Kinkorova J, Costigliola V. Predictive, preventive and personalised medicine as the hardcore of 'Horizon 2020′: EPMA position paper. EPMA J. 2014;5(1):6.

    PubMed  PubMed Central  Google Scholar 

  13. Golubnitschaja O, Watson ID, Topic E, Sandberg S, Ferrari M, Costigliola V. Position paper of the EPMA and EFLM: a global vision of the consolidated promotion of an integrative medical approach to advance health care. EPMA J. 2013;4(1):12.

    PubMed  PubMed Central  Google Scholar 

  14. Golubnitschaja O, Baban B, Boniolo G, Wang W, Bubnov R, Kapalla M, et al. Medicine in the early twenty-first century: paradigm and anticipation - EPMA position paper 2016. EPMA J. 2016;7:23. https://doi.org/10.1186/s13167-016-0072-4.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yan YX, Dong J, Liu YQ, Zhang J, Song MS, He Y, et al. Association of suboptimal health status with psychosocial stress, plasma cortisol and mRNA expression of glucocorticoid receptor alpha/beta in lymphocyte. Stress. 2015;18(1):29–34.

    CAS  PubMed  Google Scholar 

  16. Yan YX, Wu LJ, Xiao HB, Wang S, Dong J, Wang W. Latent class analysis to evaluate performance of plasma cortisol, plasma catecholamines, and SHSQ-25 for early recognition of suboptimal health status. EPMA J. 2018;9(3):299–305.

    PubMed  PubMed Central  Google Scholar 

  17. Alzain MA, Asweto CO, Zhang J, Fang H, Zhao Z, Guo X, et al. Telomere length and accelerated biological aging in the China suboptimal health cohort: a case-control study. OMICS. 2017;21(6):333–9.

    CAS  PubMed  Google Scholar 

  18. Sun Q, Xu X, Zhang J, Sun M, Tian Q, Li Q, et al. Association of suboptimal health status with intestinal microbiota in Chinese youths. J Cell Mol Med. 2020;24(2):1837–47.

    CAS  PubMed  Google Scholar 

  19. Hatzimanikatis V, Li C, Ionita JA, Broadbelt LJ. Metabolic networks: enzyme function and metabolite structure. Curr Opin Struct Biol. 2004;14(3):300–6.

    CAS  PubMed  Google Scholar 

  20. Patti GJ, Yanes O, Siuzdak G. Innovation: metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol. 2012;13(4):263–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Beger RD, Dunn W, Schmidt MA, Gross SS, Kirwan JA, Cascante M, et al. Metabolomics enables precision medicine: “a white paper, community perspective”. Metabolomics. 2016;12(10):149.

    PubMed  PubMed Central  Google Scholar 

  22. Fiehn O. Metabolomics - the link between genotypes and phenotypes. Plant MolBiol. 2002;48(1–2):155–71.

    CAS  Google Scholar 

  23. Wishart DS. Emerging applications of metabolomics in drug discovery and precision medicine. Nat Rev Drug Discov. 2016;15(7):473–84.

    CAS  PubMed  Google Scholar 

  24. Griffiths WJ, Koal T, Wang Y, Kohl M, Enot DP, Deigner HP. Targeted metabolomics for biomarker discovery. Angew Chem Int Ed Eng. 2010;49(32):5426–45.

    CAS  Google Scholar 

  25. Schrimpe-Rutledge AC, Codreanu SG, Sherrod SD, McLean JA. Untargeted metabolomics strategies-challenges and emerging directions. J Am Soc Mass Spectrom. 2016;27(12):1897–905.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Fan Y, Li Y, Chen Y, Zhao YJ, Liu LW, Li J, et al. Comprehensive metabolomic characterization of coronary artery diseases. J Am Coll Cardiol. 2016;68(12):1281–93.

    PubMed  Google Scholar 

  27. Amin AM, Mostafa H, Arif NH, Abdul Kader MAS, Kah HY. Metabolomics profiling and pathway analysis of human plasma and urine reveal further insights into the multifactorial nature of coronary artery disease. Clin Chim Acta. 2019;493:112–22.

    CAS  PubMed  Google Scholar 

  28. Floegel A, Stefan N, Yu Z, Muhlenbruch K, Drogan D, Joost HG, et al. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes. 2013;62(2):639–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011;17(4):448–53.

    PubMed  PubMed Central  Google Scholar 

  30. Pujos-Guillot E, Brandolini M, Petera M, Grissa D, Joly C, Lyan B, et al. Systems metabolomics for prediction of metabolic syndrome. J Proteome Res. 2017;16(6):2262–72.

    CAS  PubMed  Google Scholar 

  31. Naviaux RK, Naviaux JC, Li K, Bright AT, Alaynick WA, Wang L, et al. Metabolic features of chronic fatigue syndrome. Proc Natl Acad Sci U S A. 2016;113(37):E5472–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Guo L, Milburn MV, Ryals JA, Lonergan SC, Mitchell MW, Wulff JE, et al. Plasma metabolomic profiles enhance precision medicine for volunteers of normal health. Proc Natl Acad Sci U S A. 2015;112(35):E4901–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. DeSalvo KB, Olson R, Casavale KO. Dietary guidelines for Americans. JAMA. 2016;315(5):457–8.

    CAS  PubMed  Google Scholar 

  34. Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Ainsworth BE, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35(8):1381–95.

    PubMed  Google Scholar 

  35. Soldatos CR, Dikeos DG, Paparrigopoulos TJ. Athens insomnia scale: validation of an instrument based on ICD-10 criteria. J Psychosom Res. 2000;48(6):555–60.

    CAS  PubMed  Google Scholar 

  36. Shear MK, Vander Bilt J, Rucci P, Endicott J, Lydiard B, Otto MW, et al. Reliability and validity of a structured interview guide for the Hamilton Anxiety Rating Scale (SIGH-A). Depress Anxiety. 2001;13(4):166–78.

    CAS  PubMed  Google Scholar 

  37. Bagby RM, Ryder AG, Schuller DR, Marshall MB. The Hamilton Depression Rating Scale: has the gold standard become a lead weight? Am J Psychiatry. 2004;161(12):2163–77.

    PubMed  Google Scholar 

  38. Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol. 2012;30(10):918–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Forsberg EM, Huan T, Rinehart D, Benton HP, Warth B, Hilmers B, et al. Data processing, multi-omic pathway mapping, and metabolite activity analysis using XCMS online. Nat Protoc. 2018;13(4):633–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45(D1):D353–D61.

    CAS  PubMed  Google Scholar 

  41. Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vazquez-Fresno R, et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 2018;46(D1):D608–D17.

    CAS  PubMed  Google Scholar 

  42. Guijas C, Montenegro-Burke JR, Domingo-Almenara X, Palermo A, Warth B, Hermann G, et al. METLIN: a technology platform for identifying knowns and unknowns. Anal Chem. 2018;90(5):3156–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, et al. PubChem substance and compound databases. Nucleic Acids Res. 2016;44(D1):D1202–13. https://doi.org/10.1093/nar/gkv951.

    Article  CAS  PubMed  Google Scholar 

  44. Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, et al. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018;46(W1):W486–W94.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Szklarczyk D, Santos A, von Mering C, Jensen LJ, Bork P, Kuhn M. STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res. 2016;44(D1):D380–4.

    CAS  PubMed  Google Scholar 

  46. R Foundation for Statistical Computing. R: A language and environment for statistical computing. 2017. https://www.R-project.org/. Accessed 5 Feb 2020.

  47. Guven A, Polat S. Testicular adrenal rest tumor in two brothers with a novel mutation in the 3-beta-hydroxysteroid dehydrogenase-2 gene. J Clin Res Pediatr Endocrinol. 2017;9(1):85–90.

    PubMed  PubMed Central  Google Scholar 

  48. Kim CJ, Lin L, Huang N, Quigley CA, AvRuskin TW, Achermann JC, et al. Severe combined adrenal and gonadal deficiency caused by novel mutations in the cholesterol side chain cleavage enzyme, P450scc. J Clin Endocrinol Metab. 2008;93(3):696–702.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Bicikova M, Hill M, Ripova D, Mohr P, Hampl R. Determination of steroid metabolome as a possible tool for laboratory diagnosis of schizophrenia. J Steroid Biochem Mol Biol. 2013;133:77–83.

    CAS  PubMed  Google Scholar 

  50. Nieminen LR, Makino KK, Mehta N, Virkkunen M, Kim HY, Hibbeln JR. Relationship between omega-3 fatty acids and plasma neuroactive steroids in alcoholism, depression and controls. Prostaglandins Leukot Essent Fat Acids. 2006;75(4–5):309–14.

    CAS  Google Scholar 

  51. Straub RH, Weidler C, Demmel B, Herrmann M, Kees F, Schmidt M, et al. Renal clearance and daily excretion of cortisol and adrenal androgens in patients with rheumatoid arthritis and systemic lupus erythematosus. Ann Rheum Dis. 2004;63(8):961–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Berria R, Gastaldelli A, Lucidi S, Belfort R, De Filippis E, Easton C, et al. Reduction in hematocrit level after pioglitazone treatment is correlated with decreased plasma free testosterone level, not hemodilution, in women with polycystic ovary syndrome. Clin Pharmacol Ther. 2006;80(2):105–14.

    CAS  PubMed  Google Scholar 

  53. Golubnitschaja O. Time for new guidelines in advanced diabetes care: paradigm change from delayed interventional approach to predictive, preventive & personalized medicine. EPMA J. 2010;1(1):3–12.

    PubMed  PubMed Central  Google Scholar 

  54. Germain A, Barupal DK, Levine SM, Hanson MR. Comprehensive circulatory metabolomics in ME/CFS reveals disrupted metabolism of acyl lipids and steroids. Metabolites. 2020;10(1):E34.

    PubMed  Google Scholar 

  55. Malatji BG, Meyer H, Mason S, Engelke UFH, Wevers RA, van Reenen M, et al. A diagnostic biomarker profile for fibromyalgia syndrome based on an NMR metabolomics study of selected patients and controls. BMC Neurol. 2017;17(1):88.

    PubMed  PubMed Central  Google Scholar 

  56. Huwiler A, Kolter T, Pfeilschifter J, Sandhoff K. Physiology and pathophysiology of sphingolipid metabolism and signaling. Biochim Biophys Acta. 2000;1485(2–3):63–99.

    CAS  PubMed  Google Scholar 

  57. Hannun YA, Luberto C, Argraves KM. Enzymes of sphingolipid metabolism: from modular to integrative signaling. Biochemistry. 2001;40(16):4893–903.

    CAS  PubMed  Google Scholar 

  58. Maceyka M, Spiegel S. Sphingolipid metabolites in inflammatory disease. Nature. 2014;510(7503):58–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Yu Z, Peng Q, Huang Y. Potential therapeutic targets for atherosclerosis in sphingolipid metabolism. Clin Sci (Lond). 2019;133(6):763–76.

    CAS  Google Scholar 

  60. Slotte JP, Ramstedt B. The functional role of sphingomyelin in cell membranes. Eur J Lipid Sci Technol. 2007;109(10):977–81.

    CAS  Google Scholar 

  61. Nelson JC, Jiang XC, Tabas I, Tall A, Shea S. Plasma sphingomyelin and subclinical atherosclerosis: findings from the multi-ethnic study of atherosclerosis. Am J Epidemiol. 2006;163(10):903–12.

    PubMed  Google Scholar 

  62. Schlitt A, Blankenberg S, Yan D, von Gizycki H, Buerke M, Werdan K, et al. Further evaluation of plasma sphingomyelin levels as a risk factor for coronary artery disease. Nutr Metab (Lond). 2006;3:5.

    Google Scholar 

  63. Zhao YR, Dong JB, Li Y, Wu MP. Sphingomyelin synthase 2 over-expression induces expression of aortic inflammatory biomarkers and decreases circulating EPCs in ApoE KO mice. Life Sci. 2012;90(21–22):867–73.

    CAS  PubMed  Google Scholar 

  64. Liu J, Huan C, Chakraborty M, Zhang H, Lu D, Kuo MS, et al. Macrophage sphingomyelin synthase 2 deficiency decreases atherosclerosis in mice. Circ Res. 2009;105(3):295–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Ghayee HK, Auchus RJ. Basic concepts and recent developments in human steroid hormone biosynthesis. Rev Endocr Metab Disord. 2007;8(4):289–300.

    CAS  PubMed  Google Scholar 

  66. Sewer MB, Li D. Regulation of steroid hormone biosynthesis by the cytoskeleton. Lipids. 2008;43(12):1109–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Garg R, Adler GK. Aldosterone and the mineralocorticoid receptor: risk factors for cardiometabolic disorders. Curr Hypertens Rep. 2015;17(7):52.

    PubMed  Google Scholar 

  68. Hofmann A, Peitzsch M, Brunssen C, Mittag J, Jannasch A, Frenzel A, et al. Elevated steroid hormone production in the db/db mouse model of obesity and type 2 diabetes. Horm Metab Res. 2017;49(1):43–9.

    CAS  PubMed  Google Scholar 

  69. Vitvitsky V, Garg SK, Banerjee R. Taurine biosynthesis by neurons and astrocytes. J Biol Chem. 2011;286(37):32002–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. De la Puerta C, Arrieta F, Balsa J, Botella-Carretero J, Zamarrón I, Vázquez C. Taurine and glucose metabolism: a review. Nutr Hosp. 2010;25(6):910–9.

    PubMed  Google Scholar 

  71. Sarkar P, Basak P, Ghosh S, Kundu M, Sil PC. Prophylactic role of taurine and its derivatives against diabetes mellitus and its related complications. Food Chem Toxicol. 2017;110:109–21.

    CAS  PubMed  Google Scholar 

  72. McCarty MF. Supplementation with phycocyanobilin, citrulline, taurine, and supranutritional doses of folic acid and biotin-potential for preventing or slowing the progression of diabetic complications. Healthcare (Basel). 2017;5(1):E15.

    Google Scholar 

  73. Foda DS, Farrag EK, Metwally NS, Maghraby AS, Farrag ARH, Rawi SM. Protective and therapeutic impact of taurine on some biochemical, immunological and histological parameters in diabetic rats. J App Pharm Sci. 2016;6(10):045–54.

    CAS  Google Scholar 

  74. Schukfeh N, Metzelder ML, Petersen C, Reismann M, Pfister ED, Ure BM, et al. Normalization of serum bile acids after partial external biliary diversion indicates an excellent long-term outcome in children with progressive familial intrahepatic cholestasis. J Pediatr Surg. 2012;47(3):501–5.

    PubMed  Google Scholar 

  75. Lapidus A, Akerlund JE, Einarsson C. Gallbladder bile composition in patients with Crohn’s disease. World J Gastroenterol. 2006;12(1):70–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Huang H-Y, Zhou H, Wang H, Chen Y-X, Fang F. Novel mutations in the 3β-hydroxy-Δ5-C27-steroid dehydrogenase gene (HSD3B7) in a patient with neonatal cholestasis. Chin Med J. 2016;129(1):98.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Gordon JL, Rubinow DR, Eisenlohr-Moul TA, Xia K, Schmidt PJ, Girdler SS. Efficacy of transdermal estradiol and micronized progesterone in the prevention of depressive symptoms in the menopause transition: a randomized clinical trial. JAMA Psychiatry. 2018;75(2):149–57.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the participants and their families who donated their time and effort in helping to make this study possible.

Funding

This work was partially supported by National Natural Science Foundation of China (Grant Numbers: 81673247 & 81773527) and China- Australia International Collaborative Grant (NSFC 81561128020, NHMRC APP1112767). HW and XW were supported by the China Scholarship Council (CSC 201708110200 and CSC 201608230108).

Author information

Authors and Affiliations

Authors

Contributions

HW, YW, and WW participated in the design of the study. HW, JZ, HL, XZ, WC, JXZ, DL, LW, and MS performed participant enrollment and collected the samples. HW, EOA, XL, XW, YZ, and ZG performed the metabolomics analysis. HW performed the statistical analysis and drafted the manuscript. YW and WW revised the manuscript.

Corresponding author

Correspondence to Wei Wang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Consent for publication

Not applicable.

Ethical approval and consent to participate

This study was approved by the Ethics Committee of the Weifang University, Weifang, China. Written informed consent was obtained from each participant at the beginning of the study. The ethics approval was given in compliance with the Declaration of Helsinki.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1358 kb)

ESM 2

(XLSX 1213 kb)

ESM 3

(XLSX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Tian, Q., Zhang, J. et al. Population-based case-control study revealed metabolomic biomarkers of suboptimal health status in Chinese population—potential utility for innovative approach by predictive, preventive, and personalized medicine. EPMA Journal 11, 147–160 (2020). https://doi.org/10.1007/s13167-020-00200-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13167-020-00200-7

Keywords

Navigation