Skip to main content
Log in

Cognitive Penetrability of Perception in the Age of Prediction: Predictive Systems are Penetrable Systems

Review of Philosophy and Psychology Aims and scope Submit manuscript

A Commentary to this article was published on 09 May 2015

Abstract

The goal of perceptual systems is to allow organisms to adaptively respond to ecologically relevant stimuli. Because all perceptual inputs are ambiguous, perception needs to rely on prior knowledge accumulated over evolutionary and developmental time to turn sensory energy into information useful for guiding behavior. It remains controversial whether the guidance of perception extends to cognitive states or is locked up in a “cognitively impenetrable” part of perception. I argue that expectations, knowledge, and task demands can shape perception at multiple levels, leaving no part untouched. The position advocated here is broadly consistent with the notion that perceptual systems strive to minimize prediction error en route to globally optimal solutions (Clark Behavioral and Brain Sciences 36(3):181–204, 2013). On this view, penetrability should be expected whenever constraining lower-level processes by higher level knowledge is minimizes global prediction error. Just as Fodor feared (e.g., Fodor Philosophy of Science 51:23–43, 1984, Philosophy of Science 51:23–43, 1988) cognitive penetration of perception threatens theory-neutral observation and the distinction between observation and inference. However, because theories themselves are constrained by the task of minimizing prediction error, theory-laden observation turns out to be superior to theory-free observation in turning sensory energy into useful information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. It is common, for instance, for my undergraduate students presented with evidence of linguistic effects on color perception to wonder how language can change the retina. This reaction wonderfully illustrates the implicit (and incorrect) assumption that perception involves sampling the retina and that changes to what we see must always track a change in input.

  2. James’s influence can be glimpsed in Henri Bergson’s claim that “Perception is never a mere contact of the mind with the object present; it is impregnated with memory-images which complete it as they interpret it” (Bergson 1911, p. 133).

  3. There is some irony in this because Marr’s emphasis on vision as a bottom-up process heavily influenced opponents of the idea that perception is cognitively penetrable (Pylyshyn 1999).

  4. Levin and Banaji’s (2006) demonstration that Black faces appear darker than White faces (in particular Exp. 1) cannot be taken at face value owing to stimulus confounds. Specifically, although the photographic faces have the same mean brightness the Black face is psychophysically darker even when the faces are distorted so that they no longer look like faces (Lupyan and Lang, in prep; see also Firestone and Scholl, under review).

  5. The term “representation” has varying definitions. My use is consistent with the use in contemporary cognitive psychology and cognitive neuroscience where it has come to denote an information-bearing state. Although typically applied to neural states, it is a promiscuous term that can be applied to, e.g., the information encoded in the immune system. Critically, my saying that something is “represented” should in no way be interpreted to mean that the information is explicit or implemented in a symbolic form.

  6. I will continue to use terms like “post-perceptual” because the term is descriptively useful, but I do not think it is possible to say where perception ends and cognition begins.

  7. Arguably, this activation of perceptual features is word recognition, but that is a subject for another paper (Lupyan and Bergen forthcoming).

  8. One explanation is that higher-level knowledge helps to integrate otherwise unrelated visual parts into coherent wholes (Lupyan and Spivey 2008).

  9. The pairs are made to be exactly equidistant by editing ‘B’ to have identical upper and lower loops (called ‘counters’ in typography jargon).

  10. The spotlight metaphor also harkens to extramissive theories of vision—that we see by emitting rays from our eyes—something that 13–67 % of adults endorse depending on the question! (Winer et al. 2002).

  11. Viewing attention in this way also avoids another common trope—often explicitly articulated at the start of talks and papers—that attentional mechanisms exist because “Reflected light carries too much information for our visual system to process at once” (Franconeri et al. 2005). Such a view implies that if only humans had higher processing capacities, there would be no need for attention. The fallacy of this argument can be seen by taking it to its extreme: If humans with their relatively large memories and sensory processing capacities are in need of attention to cope with all that information out there, then consider how much attention an earthworm would need to make sense of all that information! Responding that the perceptual system of worms are far simpler and do not have this problem, begs the question. Why should our own perception outstrip our processing capacities by such a large margin? On the present view, attention is needed because the optimal perceptual representation for one task is suboptimal for another. Attention is the process by which perceptual represntations are transformed to make them more useful for guiding for a specific task.

  12. However, if the cost of a false alarm is much lower than the cost of a miss, a simple change in bias may be sufficient. For example, being thirsty appears to bias people to see things as being more transparent possibly because seeing water where there is none is better than missing water entirely (Changizi and Hall 2001).

References

  • Abdel Rahman, R., and W. Sommer. 2008. Seeing what we know and understand: how knowledge shapes perception. Psychonomic Bulletin & Review 15(6): 1055–1063. doi:10.3758/PBR.15.6.1055.

    Article  Google Scholar 

  • Adelson, E.H. 1993. Perceptual organization and the judgment of brightness. Science 262(5142): 2042–2044.

    Article  Google Scholar 

  • Ahissar, M., and S. Hochstein. 2004. The reverse hierarchy theory of visual perceptual learning. Trends in Cognitive Sciences 8(10): 457–464.

    Article  Google Scholar 

  • Amazeen, E.L., and M.T. Turvey. 1996. Weight perception and the haptic size–weight illusion are functions of the inertia tensor. Journal of Experimental Psychology: Human Perception and Performance 22(1): 213–232. doi:10.1037/0096-1523.22.1.213.

    Google Scholar 

  • Anderson, B. 2011. There is no such thing as attention. Frontiers in Theoretical and Philosophical Psychology 2: 246. doi:10.3389/fpsyg.2011.00246.

    Google Scholar 

  • Anderson, B.L., and J. Winawer. 2005. Image segmentation and lightness perception. Nature 434(7029): 79–83. doi:10.1038/nature03271.

    Article  Google Scholar 

  • Ansorge, U., and S.I. Becker. 2011. Automatic priming of attentional control by relevant colors. Attention, Perception, & Psychophysics.. doi:10.3758/s13414-011-0231-6.

    Google Scholar 

  • Barlow, H. 1990. Conditions for versatile learning, Helmholtz’s unconscious inference, and the task of perception. Vision Research 30(11): 1561–1571.

    Article  Google Scholar 

  • Beets, I.A.M., B.M. ’t Hart, F. Rösler, D.Y.P. Henriques, W. Einhäuser, and K. Fiehler. 2010. Online action-to-perception transfer: only percept-dependent action affects perception. Vision Research 50(24): 2633–2641. doi:10.1016/j.visres.2010.10.004.

    Article  Google Scholar 

  • Bergson, H. 1911. Matter and memory. Cambridge: The MIT Press.

    Google Scholar 

  • Blake, R., K.V. Sobel, and T.W. James. 2004. Neural synergy between kinetic vision and touch. Psychological Science 15(6): 397–402. doi:10.1111/j.0956-7976.2004.00691.x.

    Article  Google Scholar 

  • Buckingham, G., and M.A. Goodale. 2010. Lifting without seeing: the role of vision in perceiving and acting upon the size weight illusion. PLoS ONE 5(3), e9709. doi:10.1371/journal.pone.0009709.

    Article  Google Scholar 

  • Bueti, D., and E. Macaluso. 2010. Auditory temporal expectations modulate activity in visual cortex. NeuroImage 51(3): 1168–1183. doi:10.1016/j.neuroimage.2010.03.023.

    Article  Google Scholar 

  • Bulthoff, I., H. Bulthoff, and P. Sinha. 1998. Top-down influences on stereoscopic depth-perception. Nature Neuroscience 1(3): 254–257.

    Article  Google Scholar 

  • Bybee, J., and McClelland, J. L. (2005). Alternatives to the combinatorial paradigm of linguistic theory based on domain general principles of human cognition. The Linguistic Review, 22(2–4). doi:10.1515/tlir.2005.22.2-4.381.

  • Calvert, G. A., Bullmore, E. T., Brammer, M. J., Campbell, R., Williams, S. C. R., McGuire, P. K., … David, A. S. 1997. Activation of Auditory Cortex During Silent Lipreading. Science, 276(5312): 593–596. doi:10.1126/science.276.5312.593.

  • Carrasco, M., S. Ling, and S. Read. 2004. Attention alters appearance. Nature Neuroscience 7(3): 308–313.

    Article  Google Scholar 

  • Cave, K.R., and N.P. Bichot. 1999. Visuospatial attention: beyond a spotlight model. Psychonomic Bulletin & Review 6(2): 204–223.

    Article  Google Scholar 

  • Changizi, M.A., and W.G. Hall. 2001. Thirst modulates a perception. Perception 30(12): 1489–1497. doi:10.1068/p3266.

    Article  Google Scholar 

  • Chun, M.M., and J.M. Wolfe. 2001. Visual Attention. In Blackwell handbook of perception, ed. B. Goldstein, 272–310. Oxford, UK: Blackwell Publishers Ltd.

  • Churchland, P.M. 1988. Perceptual plasticity and theoretical neutrality: a reply to Jerry Fodor. Philosophy of Science 55(June): 167–87.

    Article  Google Scholar 

  • Clark, A. 2013. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences 36(3): 181–204.

    Article  Google Scholar 

  • Cohen, L., S. Lehéricy, F. Chochon, C. Lemer, S. Rivaud, and S. Dehaene. 2002. Language‐specific tuning of visual cortex? Functional properties of the visual word form area. Brain 125(5): 1054–1069. doi:10.1093/brain/awf094.

    Article  Google Scholar 

  • Çukur, T., S. Nishimoto, A.G. Huth, and J.L. Gallant. 2013. Attention during natural vision warps semantic representation across the human brain. Nature Neuroscience 16(6): 763–770. doi:10.1038/nn.3381.

    Article  Google Scholar 

  • De Fockert, J., J. Davidoff, J. Fagot, C. Parron, and J. Goldstein. 2007. More accurate size contrast judgments in the Ebbinghaus illusion by a remote culture. Journal of Experimental Psychology, Human Perception and Performance 33(3): 738–742. doi:10.1037/0096-1523.33.3.738.

    Article  Google Scholar 

  • DeLong, K.A., T.P. Urbach, and M. Kutas. 2005. Probabilistic word pre-activation during language comprehension inferred from electrical brain activity. Nature Neuroscience 8(8): 1117–1121. doi:10.1038/nn1504.

    Article  Google Scholar 

  • Deroy, O. 2013. Object-sensitivity versus cognitive penetrability of perception. Philosophical Studies 162(1): 87–107. doi:10.1007/s11098-012-9989-1.

    Article  Google Scholar 

  • Dieter, K.C., B. Hu, D.C. Knill, R. Blake, and D. Tadin. 2013. Kinesthesis can make an invisible hand visible. Psychological Science. doi:10.1177/0956797613497968.

    Google Scholar 

  • Dikker, S., H. Rabagliati, and L. Pylkkänen. 2009. Sensitivity to syntax in visual cortex. Cognition 110(3): 293–321. doi:10.1016/j.cognition.2008.09.008.

    Article  Google Scholar 

  • Dikker, S., H. Rabagliati, T.A. Farmer, and L. Pylkkänen. 2010. Early occipital sensitivity to syntactic category is based on form typicality. Psychological Science 21(5): 629–634. doi:10.1177/0956797610367751.

    Article  Google Scholar 

  • Dils, A.T., and L. Boroditsky. 2010. Visual motion aftereffect from understanding motion language. Proceedings of the National Academy of Sciences 107: 16396–16400. doi:10.1073/pnas.1009438107.

    Article  Google Scholar 

  • Egly, R., J. Driver, and R.D. Rafal. 1994. Shifting visual-attention between objects and locations - evidence from normal and parietal lesion subjects. Journal of Experimental Psychology-General 123(2): 161–177.

    Article  Google Scholar 

  • Elman, J.L. 2004. An alternative view of the mental lexicon. Trends in Cognitive Sciences 8(7): 301–306. doi:10.1016/j.tics.2004.05.003.

    Article  Google Scholar 

  • Elman, J.L., and J.L. McClelland. 1988. Cognitive penetration of the mechanisms of perception - compensation for coarticulation of lexically restored phonemes. Journal of Memory and Language 27(2): 143–165.

    Article  Google Scholar 

  • Estes, Z., M. Verges, and L.W. Barsalou. 2008. Head up, foot down: object words orient attention to the objects’ typical location. Psychological Science: A Journal of the American Psychological Society / APS 19(2): 93–97. doi:10.1111/j.1467-9280.2008.02051.x.

    Article  Google Scholar 

  • Firestone, C., and B.J. Scholl. 2014. “Top-down” effects where none should be found: the El Greco fallacy in perception research. Psychological Science 25(1): 38–46.

    Article  Google Scholar 

  • Flanagan, J.R., J.P. Bittner, and R.S. Johansson. 2008. Experience can change distinct size-weight priors engaged in lifting objects and judging their weights. Current Biology: CB 18(22): 1742–1747. doi:10.1016/j.cub.2008.09.042.

    Article  Google Scholar 

  • Fodor, J.A. 1983. The modularity of mind. Cambridge: MIT Press.

    Google Scholar 

  • Fodor, J.A. 1984. Observation reconsidered. Philosophy of Science 51: 23–43.

    Article  Google Scholar 

  • Fodor, J.A. 1988. A reply to Churchland’s ‘perceptual plasticity and theoretical neutrality’. Philosophy of Science 55: 188–98.

    Article  Google Scholar 

  • Fontanini, A., and D.B. Katz. 2008. Behavioral states, network states, and sensory response variability. Journal of Neurophysiology 100(3): 1160–1168. doi:10.1152/jn.90592.2008.

    Article  Google Scholar 

  • Franconeri, S.L., A. Hollingworth, and D.J. Simons. 2005. Do new objects capture attention? Psychological Science 16(4): 275–281. doi:10.1111/j.0956-7976.2005.01528.x.

    Article  Google Scholar 

  • Friston, K. 2008. Hierarchical models in the brain. PLoS Comput Biol 4(11), e1000211. doi:10.1371/journal.pcbi.1000211.

    Article  Google Scholar 

  • Friston, K. 2010. The free-energy principle: a unified brain theory? Nature Reviews Neuroscience 11(2): 127–138. doi:10.1038/nrn2787.

    Article  Google Scholar 

  • Geisler, W.S., and D. Kersten. 2002. Illusions, perception and Bayes. Nature Neuroscience 5(6): 508–510. doi:10.1038/nn0602-508.

    Article  Google Scholar 

  • Ghose, G.M., and J.H.R. Maunsell. 2002. Attentional modulation in visual cortex depends on task timing. Nature 419(6907): 616–620. doi:10.1038/nature01057.

    Article  Google Scholar 

  • Gick, B., and D. Derrick. 2009. Aero-tactile integration in speech perception. Nature 462(7272): 502–504. doi:10.1038/nature08572.

    Article  Google Scholar 

  • Goldstone, R.L. 1995. Effects of categorization on color-perception. Psychological Science 6(5): 298–304.

    Article  Google Scholar 

  • Gregory, R.L. 1963. Distortion of visual space as inappropriate constancy scaling. Nature 199(4894): 678–680. doi:10.1038/199678a0.

    Article  Google Scholar 

  • Hansen, T., M. Olkkonen, S. Walter, and K.R. Gegenfurtner. 2006. Memory modulates color appearance. Nature Neuroscience 9(11): 1367–1368. doi:10.1038/nn1794.

    Article  Google Scholar 

  • Hay, J., Nolan, A., and Drager, K. 2006. From fush to feesh: Exemplar priming in speech perception. The Linguistic Review, 23(3): doi:10.1515/TLR.2006.014.

  • Henrich, J., S.J. Heine, and A. Norenzayan. 2010. The weirdest people in the world? The Behavioral and Brain Sciences 33(2–3): 61–83. doi:10.1017/S0140525X0999152X. discussion 83–135.

    Article  Google Scholar 

  • Hochstein, S., and M. Ahissar. 2002. View from the top: hierarchies and reverse hierarchies in the visual system. Neuron 36(5): 791–804.

    Article  Google Scholar 

  • Howe, C.Q., and D. Purves. 2002. Range image statistics can explain the anomalous perception of length. Proceedings of the National Academy of Sciences of the United States of America 99(20): 13184–13188. doi:10.1073/pnas.162474299.

    Article  Google Scholar 

  • Howe, C.Q., and D. Purves. 2004. Size contrast and assimilation explained by the statistics of natural scene geometry. Journal of Cognitive Neuroscience 16(1): 90–102. doi:10.1162/089892904322755584.

    Article  Google Scholar 

  • Howe, C.Q., and D. Purves. 2005. The Müller-Lyer illusion explained by the statistics of image–source relationships. Proceedings of the National Academy of Sciences of the United States of America 102(4): 1234–1239. doi:10.1073/pnas.0409314102.

    Article  Google Scholar 

  • Howe, C.Q., Z. Yang, and D. Purves. 2005. The Poggendorff illusion explained by natural scene geometry. Proceedings of the National Academy of Sciences of the United States of America 102(21): 7707–7712. doi:10.1073/pnas.0502893102.

    Article  Google Scholar 

  • Howe, C.Q., R. Beau Lotto, and D. Purves. 2006. Comparison of Bayesian and empirical ranking approaches to visual perception. Journal of Theoretical Biology 241(4): 866–875. doi:10.1016/j.jtbi.2006.01.017.

    Article  Google Scholar 

  • Itti, L., and P. Baldi. 2009. Bayesian surprise attracts human attention. Vision Research 49(10): 1295–1306. doi:10.1016/j.visres.2008.09.007.

    Article  Google Scholar 

  • Jack, A.I., G.L. Shulman, A.Z. Snyder, M. McAvoy, and M. Corbetta. 2006. Separate modulations of human V1 associated with spatial attention and task structure. Neuron 51(1): 135–147.

    Article  Google Scholar 

  • James, W. 1890. Principles of psychology Vol. 1. New York: Holt.

    Book  Google Scholar 

  • Jordan, T.R., S.M. Thomas, and K.C. Scott-Brown. 1999. The illusory-letters phenomenon: an illustration of graphemic restoration in visual word recognition. Perception 28(11): 1413–1416.

    Article  Google Scholar 

  • Kanizsa, G. 1979. Organization in vision: essays on gestalt perception. New York: Praeger.

    Google Scholar 

  • Kraft, J.M., and D.H. Brainard. 1999. Mechanisms of color constancy under nearly natural viewing. Proceedings of the National Academy of Sciences of the United States of America 96(1): 307–312.

    Article  Google Scholar 

  • Kreiman, G., I. Fried, and C. Koch. 2002. Single-neuron correlates of subjective vision in the human medial temporal lobe. Proceedings of the National Academy of Sciences 99(12): 8378–8383. doi:10.1073/pnas.072194099.

    Article  Google Scholar 

  • Kutas, M., and S.A. Hillyard. 1984. Brain potentials during reading reflect word expectancy and semantic association. Nature 307(5947): 161–163.

    Article  Google Scholar 

  • Landau, A., L. Aziz-Zadeh, and R.B. Ivry. 2010. The influence of language on perception: listening to sentences about faces affects the perception of faces. The Journal of Neuroscience 30(45): 15254–15261. doi:10.1523/JNEUROSCI.2046-10.2010.

    Article  Google Scholar 

  • Lee, Y. L., Lupyan, G., Roberts-Kedes, G., Mattar, D., Aguirre, G. K., & Thompson-Schill, S. L. (2013). Automatic categorization of letter identity in extrastriate visual cortex. Presented at the Human Brain Mapping, Seattle, WA.

  • Levin, D.T., and M.R. Banaji. 2006. Distortions in the perceived lightness of faces: the role of race categories. Journal of Experimental Psychology. General 135(4): 501–512. doi:10.1037/0096-3445.135.4.501.

    Article  Google Scholar 

  • Lupyan, G. 2007. Reuniting categories, language, and perception. In Twenty-Ninth Annual Meeting of the Cognitive Science Society, ed. D.S. McNamara and J.G. Trafton, 1247–1252. Austin: Cognitive Science Society.

    Google Scholar 

  • Lupyan, G. 2008. The conceptual grouping effect: categories matter (and named categories matter more). Cognition 108(2): 566–577.

    Article  Google Scholar 

  • Lupyan, G. (2012a). Linguistically modulated perception and cognition: the label-feedback hypothesis. Frontiers in Cognition, 3(54). doi:10.3389/fpsyg.2012.00054.

  • Lupyan, G. (2012b). What do words do? Towards a theory of language-augmented thought. In B. H. Ross (Ed.), The Psychology of Learning and Motivation (Vol. 57, pp. 255–297). Academic Press. Retrieved from http://www.sciencedirect.com/science/article/pii/B9780123942937000078.

  • Lupyan, G., and M.J. Spivey. 2008. Perceptual processing is facilitated by ascribing meaning to novel stimuli. Current Biology 18(10): R410–R412.

    Article  Google Scholar 

  • Lupyan, G., and M.J. Spivey. 2010a. Making the invisible visible: auditory cues facilitate visual object detection. PLoS ONE 5(7), e11452. doi:10.1371/journal.pone.0011452.

    Article  Google Scholar 

  • Lupyan, G., and M.J. Spivey. 2010b. Redundant spoken labels facilitate perception of multiple items. Attention, Perception, & Psychophysics 72(8): 2236–2253. doi:10.3758/APP.72.8.2236.

    Article  Google Scholar 

  • Lupyan, G., and S.L. Thompson-Schill. 2012. The evocative power of words: activation of concepts by verbal and nonverbal means. Journal of Experimental Psychology-General 141(1): 170–186. doi:10.1037/a0024904.

    Article  Google Scholar 

  • Lupyan, G., and E.J. Ward. 2013. Language can boost otherwise unseen objects into visual awareness. Proceedings of the National Academy of Sciences 110(35): 14196–14201. doi:10.1073/pnas.1303312110.

    Article  Google Scholar 

  • Lupyan, G., Thompson-Schill, S. L., & Swingley, D. (2009). The penetration of visual representations by conceptual categories. In Meeting of the Vision Sciences Society.

  • Lupyan, G., S.L. Thompson-Schill, and D. Swingley. 2010. Conceptual penetration of visual processing. Psychological Science 21(5): 682–691.

    Article  Google Scholar 

  • Lyons, J. 2011. Circularity, reliability, and the cognitive penetrability of perception. Philosophical Issues 21(1): 289–311. doi:10.1111/j.1533-6077.2011.00205.x.

    Article  Google Scholar 

  • Macpherson, F. 2012. Cognitive penetration of colour experience: rethinking the issue in light of an indirect mechanism. Philosophy and Phenomenological Research 84(1): 24–62. doi:10.1111/j.1933-1592.2010.00481.x.

    Article  Google Scholar 

  • Marr, D. 1982. Vision: a computational approach. San Francisco: Freeman & Co.

    Google Scholar 

  • McCauley, R.N., and J. Henrich. 2006. Susceptibility to the Muller-Lyer Illusion, theory-neutral observation, and the diachronic penetrability of the visual input system. Philosophical Psychology 19(1): 79–101.

    Article  Google Scholar 

  • McClelland, J.L., D. Mirman, and L.L. Holt. 2006. Are there interactive processes in speech perception? Trends in Cognitive Sciences 10(8): 363–369.

    Article  Google Scholar 

  • McGurk, H., and J. MacDonald. 1976. Hearing lips and seeing voices. Nature 264(5588): 746–748.

    Article  Google Scholar 

  • Meng, X., and Q. Zaidi. 2011. Visual effects of haptic feedback are large but local. PLoS ONE 6(5), e19877. doi:10.1371/journal.pone.0019877.

    Article  Google Scholar 

  • Meteyard, L., B. Bahrami, and G. Vigliocco. 2007. Motion detection and motion verbs: language affects low-level visual perception. Psychological Science 18: 1007–1013. doi:10.1111/j.1467-9280.2007.02016.x.

    Article  Google Scholar 

  • Meteyard, L., N. Zokaei, B. Bahrami, and G. Vigliocco. 2008. Visual motion interferes with lexical decision on motion words. Current Biology 18(17): R732–R733. doi:10.1016/j.cub.2008.07.016.

    Article  Google Scholar 

  • Moore, C.M., and H. Egeth. 1998. How does feature-based attention affect visual processing? Journal of Experimental Psychology. Human Perception and Performance 24(4): 1296–310.

    Article  Google Scholar 

  • Niedzielski, N. 1999. The effect of social information on the perception of sociolinguistic variables. Journal of Language and Social Psychology 18(1): 62–85. doi:10.1177/0261927X99018001005.

    Article  Google Scholar 

  • O’Connor, D.H., M.M. Fukui, M.A. Pinsk, and S. Kastner. 2002. Attention modulates responses in the human lateral geniculate nucleus. Nat Neurosci 5(11): 1203–1209. doi:10.1038/nn957.

    Article  Google Scholar 

  • Oliva, A., and A. Torralba. 2006. Building the gist of a scene: the role of global image features in recognition. Progress in Brain Research 155: 23–36. doi:10.1016/S0079-6123(06)55002-2.

    Article  Google Scholar 

  • Oliva, A., and A. Torralba. 2007. The role of context in object recognition. Trends in Cognitive Sciences 11(12): 520–527. doi:10.1016/j.tics.2007.09.009.

    Article  Google Scholar 

  • Parker, N.I., and P.L. Newbigging. 1963. Magnitude and decrement of the Müller-Lyer illusion as a function of pre-training. Canadian Journal of Psychology/Revue Canadienne de Psychologie 17(1): 134–140. doi:10.1037/h0083262.

    Article  Google Scholar 

  • Pasley, B.N., L.C. Mayes, and R.T. Schultz. 2004. Subcortical discrimination of unperceived objects during binocular rivalry. Neuron 42(1): 163–172.

    Article  Google Scholar 

  • Pelekanos, V., and K. Moutoussis. 2011. The effect of language on visual contrast sensitivity. Perception 40(12): 1402–1412. doi:10.1068/p7010.

    Article  Google Scholar 

  • Potter, M.C. 1975. Meaning in visual search. Science (New York, N.Y.) 187(4180): 965–966.

    Article  Google Scholar 

  • Potter, M.C., and L.F. Fox. 2009. Detecting and remembering simultaneous pictures in a rapid serial visual presentation. Journal of Experimental Psychology. Human Perception and Performance 35(1): 28–38. doi:10.1037/a0013624.

    Article  Google Scholar 

  • Purves, D., W.T. Wojtach, and R.B. Lotto. 2011. Understanding vision in wholly empirical terms. Proceedings of the National Academy of Sciences of the United States of America 108(Suppl 3): 15588–15595. doi:10.1073/pnas.1012178108.

    Article  Google Scholar 

  • Pylyshyn, Z. 1999. Vision and cognition: how do they connect? Response. Behavioral and Brain Sciences 22(3): 401–423.

    Article  Google Scholar 

  • Rao, R.P., and D.H. Ballard. 1999. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive field effects. Nature Neuroscience 2: 79–87.

    Article  Google Scholar 

  • Ross, H.E. 1969. When is a weight not illusory? Quarterly Journal of Experimental Psychology 21(4): 346–355. doi:10.1080/14640746908400230.

    Article  Google Scholar 

  • Rudel, R.G., and H.-L. Teuber. 1963. Decrement of visual and haptic müller-lyer illusion on repeated trials: a study of crossmodal transfer. Quarterly Journal of Experimental Psychology 15(2): 125–131. doi:10.1080/17470216308416563.

    Article  Google Scholar 

  • Samuelsen, C.L., M.P.H. Gardner, and A. Fontanini. 2012. Effects of cue-triggered expectation on cortical processing of taste. Neuron 74(2): 410–422. doi:10.1016/j.neuron.2012.02.031.

    Article  Google Scholar 

  • Sapir, E. 1929. The status of linguistics as a science. Language 5: 207–214.

    Article  Google Scholar 

  • Schultz, G., and R. Meizack. 1991. The Charles Bonnet syndrome: “phantom visual images.”. Perception 20(6): 809–825. doi:10.1068/p200809.

    Article  Google Scholar 

  • Schwitzgebel, E. (2013). Striking Confirmation of the Spelunker Illusion. The Splintered Mind. Retrieved from http://schwitzsplinters.blogspot.ca/2013/11/striking-confirmation-of-spelunker.html.

  • Selkin, J., and M. Wertheimer. 1957. Disappearance of the mueller-lyer illusion under prolonged inspection. Perceptual and Motor Skills 7(3): 265–266. doi:10.2466/pms.1957.7.3.265.

    Article  Google Scholar 

  • Shams, L., Y. Kamitani, and S. Shimojo. 2002. Visual illusion induced by sound. Cognitive Brain Research 14(1): 147–152.

    Article  Google Scholar 

  • Sheinberg, D.L., and N.K. Logothetis. 1997. The role of temporal cortical areas in perceptual organization. Proceedings of the National Academy of Sciences 94(7): 3408–3413.

    Article  Google Scholar 

  • Siegel, S. 2012. Cognitive penetrability and perceptual justification. Noûs 46(2): 201–222.

    Article  Google Scholar 

  • Siegel, S. 2013. The epistemic impact of the etiology of experience. Philosophical Studies 162(3): 697–722. doi:10.1007/s11098-012-0059-5.

    Article  Google Scholar 

  • Smilek, D., M.J. Dixon, and P.M. Merikle. 2006. Revisiting the category effect: the influence of meaning and search strategy on the efficiency of visual search. Brain Research 1080: 73–90.

    Article  Google Scholar 

  • Stokes, D. (2011). Perceiving and desiring: a new look at the cognitive penetrability of experience. Philosophical Studies, 1–16. doi:10.1007/s11098-010-9688-8.

  • Störmer, V.S., J.J. McDonald, and S.A. Hillyard. 2009. Cross-modal cueing of attention alters appearance and early cortical processing of visual stimuli. Proceedings of the National Academy of Sciences 106(52): 22456–22461. doi:10.1073/pnas.0907573106.

    Article  Google Scholar 

  • Strand, E.A. 1999. Uncovering the role of gender stereotypes in speech perception. Journal of Language and Social Psychology 18(1): 86–100. doi:10.1177/0261927X99018001006.

    Article  Google Scholar 

  • Suzuki, S., and M. Grabowecky. 2003. Attention during adaptation weakens negative afterimages. Journal of Experimental Psychology: Human Perception and Performance 29(4): 793–807. doi:10.1037/0096-1523.29.4.793.

    Google Scholar 

  • Taylor-Clarke, M., S. Kennett, and P. Haggard. 2002. Vision modulates somatosensory cortical processing. Current Biology: CB 12(3): 233–236.

    Article  Google Scholar 

  • Tsuchiya, N., and C. Koch. 2005. Continuous flash suppression reduces negative afterimages. Nat Neurosci 8(8): 1096–1101. doi:10.1038/nn1500.

    Article  Google Scholar 

  • Van Boxtel, J.J.A., N. Tsuchiya, and C. Koch. 2010. Opposing effects of attention and consciousness on afterimages. Proceedings of the National Academy of Sciences 107(19): 8883–8888. doi:10.1073/pnas.0913292107.

    Article  Google Scholar 

  • Veldhuizen, M.G., D. Douglas, K. Aschenbrenner, D.R. Gitelman, and D.M. Small. 2011. The anterior insular cortex represents breaches of taste identity expectation. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 31(41): 14735–14744. doi:10.1523/JNEUROSCI.1502-11.2011.

    Article  Google Scholar 

  • Vickery, T.J., L.-W. King, and Y. Jiang. 2005. Setting up the target template in visual search. Journal of Vision 5(1): 81–92. doi:10.1.1.329.5562.

    Article  Google Scholar 

  • Wang, Q.Q., P. Cavanagh, and M. Green. 1994. Familiarity and pop-out in visual-search. Perception & Psychophysics 56(5): 495–500.

    Article  Google Scholar 

  • Watanabe, K., and S. Shimojo. 2001. When sound affects vision: effects of auditory grouping on visual motion perception. Psychological Science 12(2): 109–116.

    Article  Google Scholar 

  • Weiss, Y., E.P. Simoncelli, and E.H. Adelson. 2002. Motion illusions as optimal percepts. Nature Neuroscience 5(6): 598–604. doi:10.1038/nn858.

    Article  Google Scholar 

  • Winer, G.A., J.E. Cottrell, V. Gregg, J.S. Fournier, and L.A. Bica. 2002. Fundamentally misunderstanding visual perception. Adults’ belief in visual emissions. The American Psychologist 57(6–7): 417–424.

    Article  Google Scholar 

  • Wolfe, J.M., S.J. Butcher, C. Lee, and M. Hyle. 2003. Changing your mind: on the contributions of top-down and bottom-up guidance in visual search for feature singletons. Journal of Experimental Psychology-Human Perception and Performance 29(2): 483–502.

    Article  Google Scholar 

  • Yuille, A., and D. Kersten. 2006. Vision as Bayesian inference: analysis by synthesis? Trends in Cognitive Sciences 10(7): 301–308. doi:10.1016/j.tics.2006.05.002.

    Article  Google Scholar 

  • Zelano, C., A. Mohanty, and J.A. Gottfried. 2011. Olfactory predictive codes and stimulus templates in piriform cortex. Neuron 72(1): 178–187. doi:10.1016/j.neuron.2011.08.010.

    Article  Google Scholar 

Download references

Acknowledgments

Preparation of this manuscript was in part supported by NSF#1331293 to G.L. I thank Emily Ward, Chaz Firestone, Zoe Jenkin, and Jonathan Lang for useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Lupyan.

Additional information

A comment to this article is available at http://dx.doi.org/10.1007/s13164-015-0254-3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lupyan, G. Cognitive Penetrability of Perception in the Age of Prediction: Predictive Systems are Penetrable Systems. Rev.Phil.Psych. 6, 547–569 (2015). https://doi.org/10.1007/s13164-015-0253-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13164-015-0253-4

Keywords

Navigation