Skip to main content
Log in

Simulations of drag torque affecting synchronisers in a dual clutch transmission

  • Original Paper
  • Area 3
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

Drag torque contributes significantly to the engagement of synchronisers in vehicle transmissions. Little is understood of how drag torque varies during transient engagement. Considerable analysis, however, has shown it affects engagement and can cause the mechanism to fail. To demonstrate the significance of the role that drag torque plays during synchroniser engagement in a wet clutch dual clutch transmission numerical models of the mechanism and drag torque are developed. This includes torsional resistances from bearings, gear windage and friction, viscous shear in the concentrically aligned shafts and the wet clutch pack. Simulations are performed in Matlab® to evaluate the drag torques acting on the mechanism. The results of simulations using this model demonstrate that the drag torque is dominated by the viscous drag in the wet clutch. Furthermore simulations demonstrate the nonlinear nature of this torque, and the peak drag torque is identified as being significantly larger that typical estimations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b:

Face width

C:

Drag torque

d:

Diameter

F:

Normal force

f:

Friction

Gr:

Turbulent flow coefficient

h:

Fluid spacing

H:

Sliding ratio at the start of the approach

H:

Sliding ratio at the end of the recess

I:

Reflected inertia

K:

load intensity

L:

half cone generatrix

M:

Mesh mechanical advantage

N:

Rotational speed (rpm)

P:

Mesh power loss (kW)

Re:

Reynolds number (* denotes critical Reynolds number)

r:

Radius (* denotes radius at critical Reynolds number)

Q:

Flow rate

T:

Torque

Z:

Module

α :

Transverse operating pressure angle (degrees)

β :

Operating helix angle (°)

γ :

Gear ratio

ν :

Kinematic viscosity

μ :

Dynamic viscosity

ρ :

Density

ω :

Rotational velocity (rad/s)

ψ :

Cone angle

ζ :

Chamfer angle

s:

start of approach

S:

Sleeve

D:

Drag

t:

end of approach

M:

Mesh

m:

mean

V:

windage

l:

Pinion

I:

Index

C:

Cone

o2:

Gear outside radius

w2:

Gear operating pitch radius

o1:

Pinion outside radius

w1:

Pinion operating pitch radius

A:

Tooth tip

P:

Pitch point

References

  1. Al-Shibl K., Simmons K., Eastwick C.N.: Modelling windage power loss from an enclosed spur gear. Proc. Inst. Mech. Eng. Part A J. Power Energy 221, 331–341 (2007)

    Article  Google Scholar 

  2. Anderson, N.E., Loewenthal, S.H.: Spur Gear System Efficiency at Part and Full Load. In: Proceedings of conference on NASA Technical Paper 1622 (1980)

  3. Aphale C.R., Cho J., Schultz W.W., Ceccio S.L., Yoshioka T., Hiraki H.: Modelling and parametric study of torque in open clutch plates. Trans. ASME 128, 422–430 (2006)

    Google Scholar 

  4. Benedict, G.H., Kelley, B.W.: Instantaneous coefficients of gear tooth friction. ASME Trans. 459–470 (1961)

  5. British Standards Institute BS ISO/TR 14179-1:2001. Gears-thermal capacity-Part 1: rating gear drives with thermal equilibrium at 95°C sump temperature (2001)

  6. Changenet C., Oviedo-Marlot X., Velex P.: Power loss predictions in geared transmissions using thermal networks-application to a six speed manual gearbox. Trans. Am. Soc. Mech. Eng. 128, 618–625 (2006)

    Google Scholar 

  7. Dawson P.H.: Windage loss in larger high speed gears. Proc. Inst. Mech. Eng. 198A(1), 51–59 (1984)

    Google Scholar 

  8. Diab Y., Ville F., Velex P.: Investigations on Power Losses in high speed gears. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 220, 191–198 (2006)

    Article  Google Scholar 

  9. Diab Y., Ville F., Velex P., Changenet C.: Windage losses in high speed gears—preliminary experimental and theoretical results. J. Mech. Des. 126, 903–908 (2004)

    Article  Google Scholar 

  10. Eastwick, C.N., Johnson, G.: Gear windage: a review. J. Mech. Des. 130, Paper number 034001 (2008)

  11. Harris T.A.: Rolling Bearing Analysis, 1st edn. Wiley, New York (1966)

    Google Scholar 

  12. Heingartner, P., Mba, D.: Determining Power Losses in Helical Gear Mesh. Gear Technol. 32–37 (2005)

  13. Hoshino, H.: Analysis on Synchronisation Mechanism of Transmission. In: Proceedings of conference on SAE Technical Paper 1999-01-0734 (1999)

  14. Kemp, S.P., Linden, J.L.: Physical and Chemical Properties of a Typical Automotive Transmission Fluid. Tulsa, Oklahoma, October 1990, Paper number: 902148

  15. Kitabayashi, H., Yu Li, C., Hiraki, H.: Analysis of the various factors affecting drag torque in multiple plate wet clutches. JSAE Technical Paper 2003-01-1973 (2003)

  16. Lechner G., Naunheimer H.: Automotive Transmissions—Fundamentals, Selection, Design and Application, 1st edn. Springer, Berlin (1999)

    Google Scholar 

  17. Liu Y., Tseng C.: Simulation and analysis of synchronisation and engagement on manual transmission gearbox. Int. J. Veh. Des. 43(1–4), 200–220 (2007)

    Article  Google Scholar 

  18. Lovas L., Play D., Marialigeti J., Rigal J.: Mechanical behaviour simulation for synchromesh mechanism improvements. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 220, 919–945 (2006)

    Article  Google Scholar 

  19. Michlin Y., Myunster V.: Determination of power losses in gear transmissions with rolling and sliding friction incorporated. Mechan. Mach. Theory 37, 167–174 (2002)

    Article  MATH  Google Scholar 

  20. Razzacki, S.T., Hottenstein, J.: Synchroniser Design and Development for Dual Clutch Transmission (DCT). In: Proceedings of conference on SAE Technical Paper Detroit, MI, USA, April 2007, 2007-01-0114 (2007)

  21. Razzacki, S.T.: Synchroniser Design: A Mathematical and Dimensional Treatise. SAE Technical Paper 2004-01-1230 (2004)

  22. Schlichting H.: Boundary Layer Theory, 7th edn. McGraw-Hill, New York (1979)

    MATH  Google Scholar 

  23. Socin, R.J., Walters, L.K.: Manual Transmission Synchronizers. SAE Technical Paper 680008 (1968)

  24. Xu H., Kahraman A., Anderson N.E., Maddock D.G.: Prediction of mechanical efficiency of parallel-axis gear pairs. J. Mech. Des. 129, 58–68 (2007)

    Article  Google Scholar 

  25. Yuan Y., Liu E., Hill J., Zou Q.: An improved hydrodynamic model for open wet transmission clutches. J. Fluids Eng. 129, 333–337 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul D. Walker.

About this article

Cite this article

Walker, P.D., Zhang, N., Tamba, R. et al. Simulations of drag torque affecting synchronisers in a dual clutch transmission. Japan J. Indust. Appl. Math. 28, 119–140 (2011). https://doi.org/10.1007/s13160-011-0030-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-011-0030-4

Keywords

Mathematics Subject Classification (2000)

Navigation