Skip to main content

Advertisement

Log in

Comparison of Different Methods to Assess Macrobenthic Biomass within an Anti-Estuarine Zostera Marina Meadow in Baja California, Mexico

  • Short Communication
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Biomass is a fundamental variable to estimate benthic secondary production. Currently, the loss-on-ignition (LOI) technique is the most used method for biomass assessment, although it is expensive, time consuming, and subject to error due to the volatilization of the samples in the muffle. Moreover, samples are lost for subsequent taxonomic identification. Alternative methods for biomass evaluation, such as conversion factors, are fast, easy, reliable, and the samples are preserved for species identification. In the present study, we took benthic macrofauna samples at bimonthly intervals from August 2009 to May 2011 in a Zostera marina meadow at Estero Punta Banda, Mexico. We compared biomass estimations of the main benthic taxa between the LOI method and five conversion factors. The total mean biomass assessed with the LOI method was 45.14 ± 13.56 g ash-free dry weight (AFDW) m−2, while the values of the alternative estimation methods ranged from 63.12 ± 13.56 g AFDW m−2 to 39.25 ± 9.35 g AFDW m−2. There were no significant differences among mean biomass values estimated with the different methods (two way ANOVA, p = 0.49), indicating that all methods are valuable alternatives. The two conversion factors showing the highest correlation with the LOI method were chosen as the most reliable alternatives to estimate biomass (BREY and R&B).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Acosta-Ruiz M, Álvarez-Borrego S (1974) Distribución superficial de algunos parametros hidrológicos físicos y químicos, en el Estero de Punta Banda, B. C., en Otoño e Invierno. Ciencias Marinas 1:16–45

    Google Scholar 

  • Álvarez-Borrego S, Acosta-Ruiz, Lara-Lara JR (1975) Hidrología comparativa de las bocas de dos antiestuarios de baja California. CalCOFI Report 19:78–83

    Google Scholar 

  • Bachelet G (1982) Quelques problèmes liés à l’ estimation de la production Cas des bivalves Macoma balthica et Scrobicularia plana. Oceanol Acta 5:421–431

    Google Scholar 

  • Beukema JJ, Essink K, Michaelis H, Zwarts L (1993) Year-to-year variability in the biomass of macrobenthic animals on tidal flats of the wadden sea: how predictable is this food source for birds? Neth J Sea Res 31:319–330

    Article  Google Scholar 

  • Brey T (2001) Population dynamics in benthic invertebrates. A virtual handbook. Version 01.2. http://www.thomas-brey.de/science/virtualhandbook

  • Brey T, Rumohr H, Anka S (1988) Energy content of macrobenthic invertebrates : general conversion factors from weight to energy. J Exp Mar Biol Ecol 117:271–278

    Article  Google Scholar 

  • Calderón-Aguilera LE (1992) Analisis de la infuana bentica de San Quintin, Baja California, con enfasis en su utilidad en la evaluación de impacto ambiental. Ciencias Marinas 18:27–46

    Google Scholar 

  • Cardoso RS, Veloso VG (2003) Population dynamics and secondary production of the wedge clam Donax hanleyanus (Bivalvia: Donacidae) on a high-energy, subtropical beach of Brazil. Assessment 142:153–162. doi:10.1007/s00227-002-0926-2

    Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  • Crisp DJ (1984) Energy flow measurements. In: Holme NA, McIntyre AD (eds) Methods for the study of marine benthos, 2nd edn. Blackwell Scientific Publications, Oxford, pp 284–372

    Google Scholar 

  • Cushing D (1975) Marine ecology and fisheries, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Edgar GJ (1990) The influence of plant structure on the species richness, biomass and secondary production of macrofaunal assemblages associated with Western Australian seagrass beds. J Exp Mar Biol Ecol 137:215–240

    Article  Google Scholar 

  • Knox GA (2001) The ecology of seashores. CRC Press, Boca Raton

    Google Scholar 

  • Largier JL, Hollibaugh JT, Smith SV (1997) Seasonally hypersaline estuaries in Mediterranean-climate regions. Estuar Coast Shelf Sci 45:789–797. doi:10.1006/ecss.1997.0279

    Article  Google Scholar 

  • Lie U (1968) A quantitative study of benthic infauna in Puget Sound. FishDirSkrSerHavUnders 14:229–556

    Google Scholar 

  • Lin L (1989) A concordance correlation coefficient to evaluate reproducibility. Biometrics 45:225–268

  • Nunes-Vaz RA (2012) The salinity response of an inverse estuary to climate change & desalination. Estuar Coast Shelf Sci 98:49–59. doi:10.1016/j.ecss.2011.11.023

    Article  CAS  Google Scholar 

  • Petracco M, Cardoso RS, Corbisier TN, Turra A (2012) Secondary production of sandy beach macrofauna: an evaluation of predictive models. Estuar Coast Shelf Sci 115:359–365. doi:10.1016/j.ecss.2012.10.002

    Article  Google Scholar 

  • Quiroz-Vázquez P, Ibarra-Obando SE, Meling-López AE (2005) Composition of the epifaunal community associated with the Seagrass Zostera marina in San Quintin Bay, Baja California. Bull, Southern Calif Acad Sci 104:100–112

    Google Scholar 

  • Ricciardi A, Bourget E (1998) Weight-to-weight conversion factors for marine benthic macroinvertebrates. Mar Ecol Prog Ser 163:245–251. doi:10.3354/meps163245

    Article  Google Scholar 

  • Rowe G (1983) Biomass and production of the deep-sea macrobenthos. In: Rowe GT (ed) The Sea, Vol. 8: Deep-Sea Biology, Wiley-Interscience, New York, pp 97–121

  • Rumohr H, Brey T, Ahkar S (1987) A compilation of biometric conversion factors for benthic invertebrates of the Baltic Sea. Balt Mar Biol Publ

  • Schwinghamer P (1983) Generating ecological hypotheses from biomass spectra using causal analysis: a benthic example. Mar Ecol Prog Ser 13:151–166

    Article  Google Scholar 

  • Tagliapietra D, Sigovini M (2010) Benthic fauna: collection and identification of macrobenthic invertebrates. Terre et Environnement 88:253–261

    Google Scholar 

  • Zhou X, Cai L (2010) Secondary production of macrobenthos in mangrove area of Tong’an Bay, China. J Ocean Univ China 9:151–156. doi:10.1007/s11802-010-0151-4

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is the result of the support to science of the Mexican Government through the CONACYT scholarship program. J.C. Rubio-Polania, thanks Jagganath for her support in an important part of this study, the authors also thank Martin Serrano-Tadeo and Juan Manuel Galviz-López for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan C. Rubio-Polania or Elena Solana-Arellano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubio-Polania, J.C., Solana-Arellano, E. & Flores-Uzeta, O. Comparison of Different Methods to Assess Macrobenthic Biomass within an Anti-Estuarine Zostera Marina Meadow in Baja California, Mexico. Wetlands 36, 395–400 (2016). https://doi.org/10.1007/s13157-015-0729-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-015-0729-0

Keywords

Navigation