Skip to main content

Advertisement

Log in

Methane and Carbon Dioxide Fluxes from a European Alpine Fen Over the Snow-Free Period

  • Original Research
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Wetlands play an important role in the global carbon cycle and are sources and sinks for the greenhouse gases methane (CH4) and carbon dioxide (CO2). We provide an in situ study on variability of daytime CH4 emissions and net ecosystem CO2 exchange (NEE) from a permanently submerged, Carex rostrata dominated Swiss alpine fen over the snow-free period (June–October). Flux chamber measurements were combined with analyses of above-ground biomass and physico-chemical pore water properties. The fen was a net daytime CH4 source throughout the snow-free period, and emissions varied significantly between the sampling dates, ranging from 3.1 ± 0.9 mg CH4 m−2 h−1 in October to 8.0 ± 2.9 mg CH4 m−2 h−1 in August. The fen was generally a daytime sink for CO2, and net CO2 emission was only observed in late October. Variations in NEE were more pronounced than variations in CH4 emissions, but both fluxes correlated with changes in green C. rostrata biomass and subsurface temperatures. Methane and CO2 pore water concentrations also varied significantly over the snow-free period, decreasing and increasing, respectively. These variations were linked to the development of biomass, but CH4 emissions and NEE were not correlated with the respective pore water concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aerts R, Ludwig F (1997) Water-table changes and nutritional status affect trace gas emissions from laboratory columns of peatland soils. Soil Biol Biochem 29:1691–1698

    Article  CAS  Google Scholar 

  • Almand-Hunter BB, Walker JT, Masson NP, Hafford L, Hannigan MP (2015) Development and validation of inexpensive, automated, dynamic flux chambers. Atmos Measure Tech 8:267–280

    Article  CAS  Google Scholar 

  • Armstrong W, Justin SHFW, Beckett PM, Lythe S (1991) Root adaptation to soil waterlogging. Aqua Botany 39:57–73

    Article  Google Scholar 

  • Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob Chang Biol 9:479–492

    Article  Google Scholar 

  • Bellisario LM, Bubier JL, Moore TR, Chanton JP (1999) Controls on CH4 emissions from a northern peatland. Global Biogeochem Cycles 13:81–91

    Article  CAS  Google Scholar 

  • Bergeron O, Margolis HA, Coursolle C (2009) Forest floor carbon exchange of a boreal black spruce forest in eastern North America. Biogeosci 6:1849–1864

    Article  CAS  Google Scholar 

  • Bhullar GS, Edwards PJ, Venterink HO (2013) Variation in the plant-mediated methane transport and its importance for methane emission from intact wetland peat mesocosms. J Plant Ecol 6:298–304

    Article  Google Scholar 

  • Blodau C (2002) Carbon cycling in peatlands - A review of processes and controls. Environ Rev 10:111–134

    Article  CAS  Google Scholar 

  • Blodau C, Basiliko N, Moore TR (2004) Carbon turnover in peatland mesocosms exposed to different water table levels. Biogeochem 67:331–351

    Article  CAS  Google Scholar 

  • Buchwitz M, de Beek R, Burrows JP et al (2005) Atmospheric methane and carbon dioxide from SCIAMACHY satellite data: initial comparison with chemistry and transport models. Atmos Chem Phys 5:941–962

    Article  CAS  Google Scholar 

  • Cao GM, Xu XL, Long RJ, Wang QL, Wang CT, Du YG, Zhao XQ (2008) Methane emissions by alpine plant communities in the Qinghai-Tibet Plateau. Biol Lett 4:681–684

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheema S, Zeyer J, Henneberger R (2015) Methanotrophic and methanogenic communities in Swiss alpine fens dominated by Carex rostrata and Eriophorum angustifolium. Appl Environ Microbiol 81:5832–5844

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Yao SP, Wu N, Wang YF, Luo P, Tian JQ, Gao YH, Sun G (2008) Determinants influencing seasonal variations of methane emissions from alpine wetlands in Zoige Plateau and their implications. J Geophys Res Atmos 113:D12303. doi:10.1029/2006JD008072

  • Chen H, Wu N, Wang Y, Gao Y, Peng C (2011) Methane fluxes from alpine wetlands of Zoige Plateau in relation to water regime and vegetation under two scales. Water Air Soil Pollut 217:173–183

    Article  CAS  Google Scholar 

  • Chimner RA, Cooper DJ (2003) Carbon dynamics of pristine and hydrologically modified fens in the southern Rocky Mountains. Can J Bot 81:477–491

    Article  CAS  Google Scholar 

  • Christensen TR, Jonasson S, Callaghan TV, Havstrom M (1995) Spatial variation in high-latitude methane flux along a transect across Siberian and European tundra environments. J Geophys Res Atmos 100:21035–21045

    Article  CAS  Google Scholar 

  • Ciais P, Sabine C, Bala G et al (2013) Carbon and other biogeochemical cycles. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 465–552

    Google Scholar 

  • Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 60:609–640

    PubMed Central  CAS  PubMed  Google Scholar 

  • De Gruijter JJ, Burs DJ, Bierkens MFP, Knotters M (2006) Sampling for natural resource monitoring. Springer, Berlin

    Book  Google Scholar 

  • Denman KL, Brasseur A, Chidthaisong A et al (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 500–587

    Google Scholar 

  • Development Core Team R (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ding WX, Cai ZC, Tsuruta H (2005) Plant species effects on methane emissions from freshwater marshes. Atmos Environ 39:3199–3207

    Article  CAS  Google Scholar 

  • Drewitt GB, Black TA, Nesic Z, Humphreys ER, Jork EM, Swanson R, Ethier GJ, Griffis T, Morgenstern K (2002) Measuring forest floor CO2 fluxes in a Douglas-fir forest. Agr Forest Meteorol 110:299–317

    Article  Google Scholar 

  • Eugster W, Plüss P (2010) A fault-tolerant eddy covariance system for measuring CH4 fluxes. Agr Forest Meteorol 150:841–851

    Article  Google Scholar 

  • Franchini AG, Erny I, Zeyer J (2014) Spatial variability of methane emissions from Swiss alpine fens. Wetland Ecol Manag 22:383–397

    Article  CAS  Google Scholar 

  • Franchini AG, Henneberger R, Aeppli M, Zeyer J (2015) Methane dynamics in an alpine fen: a field based study on methanogenic and methanotrophic microbial communities. FEMS Microbiol Ecol 91:fiu032. doi:10.1093/femsec/fiu032

  • Gorham E (1991) Northern peatlands - Role in the carbon-cycle and probable responses to climatic warming. Ecol Appl 1:182–195

    Article  Google Scholar 

  • Green SM, Baird AJ (2011) A mesocosm study of the role of the sedge Eriophorum angustifolium in the efflux of methane - including that due to episodic ebullition - from peatlands. Plant and Soil 351:207–218

    Article  Google Scholar 

  • Hirota M, Tang YH, Hu QW, Hirata S, Kato T, Mo WH, Cao GM, Mariko S (2004) Methane emissions from different vegetation zones in a Qinghai-Tibetan Plateau wetland. Soil Biol Biochem 36:737–748

    Article  CAS  Google Scholar 

  • Hirota M, Tang YH, Hu QW, Hirata S, Kato T, Mo WH, Cao GM, Mariko S (2006) Carbon dioxide dynamics and controls in a deep-water wetland on the Qinghai-Tibetan Plateau. Ecosystems 9:673–688

    Article  CAS  Google Scholar 

  • Joabsson A, Christensen TR (2001) Methane emissions from wetlands and their relationship with vascular plants: an arctic example. Glob Chang Biol 7:919–932

    Article  Google Scholar 

  • Joabsson A, Christensen TR, Wallen B (1999) Vascular plant controls on methane emissions from northern peatforming wetlands. Trends Ecol Evol 14:385–388

    Article  PubMed  Google Scholar 

  • KatoT HM, Tang Y, Wada E (2011) Spatial variability of CH4 and N2O fluxes in alpine ecosystems on the Qinghai-Tibetan Plateau. Atmos Environ 45:5632–5639

    Article  Google Scholar 

  • King JY, Reeburgh WS (2002) A pulse-labeling experiment to determine the contribution of recent plant photosynthates to net methane emission in arctic wet sedge tundra. Soil Biol Biochem 34:173–180

    Article  CAS  Google Scholar 

  • King JY, Reeburgh WS, Regli SK (1998) Methane emission and transport by arctic sedges in Alaska: results of a vegetation removal experiment. J Geophys Res 103:29083–29092

    Article  CAS  Google Scholar 

  • Koch O, Tscherko D, Kandeler E (2007) Seasonal and diurnal net methane emissions from organic soils of the Eastern Alps, Austria: effects of soil temperature, water balance, and plant biomass. Arctic Antarctic Alpine Res 39:438–448

    Article  Google Scholar 

  • Koch O, Tscherko D, Kuppers M, Kandeler E (2008) Interannual ecosystem CO2 dynamics in the alpine zone of the Eastern Alps, Austria. Arctic Antarctic Alpine Res 40:487–496

    Article  Google Scholar 

  • Koelbener A, Ström L, Edwards PJ, Olde Venterink H (2010) Plant species from mesotrophic wetlands cause relatively high methane emissions from peat soil. Plant and Soil 326:147–158

    Article  CAS  Google Scholar 

  • Körner C (1999) Alpine plant life. Springer, Berlin

    Book  Google Scholar 

  • Kutzbach L, Wagner D, Pfeiffer EM (2004) Effect of microrelief and vegetation on methane emission from wet polygonal tundra, Lena Delta, Northern Siberia. Biogeochem 69:341–362

    Article  CAS  Google Scholar 

  • Lafleur PM, Roulet NT, Bubier JL, Frolking S, Moore TR (2003) Interannual variability in the peatland-atmosphere carbon dioxide exchange at an ombrotrophic bog. Global Biogeochem Cycles 17:1036

    Article  Google Scholar 

  • Lai DYF, Roulet NT, Humphreys ET, Moore TR, Dalva M (2012) The effect of atmospheric turbulence and chamber deployment period on autochamber CO2 and CH4 flux measurements in an ombrotrophic peatland. Biogeosci 9:3305–3322

    Article  CAS  Google Scholar 

  • Laine AM, Bubier J, Riutta T, Nilsson MB, Moore TR, Vasander H, Tuittila ES (2012) Abundance and composition of plant biomass as potential controls for mire net ecosytem CO2 exchange. Botan Botanique 90:63–74

    Article  CAS  Google Scholar 

  • Liebner S, Schwarzenbach SP, Zeyer J (2012) Methane emissions from an alpine fen in central Switzerland. Biogeochem 109:287–299

    Article  CAS  Google Scholar 

  • McEwing KR, Fisher JP, Zona D (2015) Environmental and vegetation controls on the spatial variability of CH4 emissions from wet-sedge and tussock tundra ecosystems in the Arctic. Plant Soil 388:37–52

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Merbold L, Steinlin C, Hagedorn F (2013) Winter greenhouse gas fluxes (CO2, CH4 and N2O) from a subalpine grassland. Biogeosci 10:3185–3203

    Article  CAS  Google Scholar 

  • Mitra S, Wassmann R, Vlek PLG (2005) An appraisal of global wetland area and its organic carbon stock. Curr Sci 88:25–35

    CAS  Google Scholar 

  • Moore T, Basiliko N (2006) Decomposition in boreal peatlands. In: Wieder RK, Vitt D (eds) Boreal peatland ecosystems. Ecological studies, vol 188. Springer, Berlin, pp 125–143

    Chapter  Google Scholar 

  • Morin TH, Bohrer G, Frasson RPDM, Naor-Azreli L, Mesi S, Stefanik KC, Schafer KVR (2014) Environmental drivers of methane fluxes from an urban temperate wetland park. J Geophys Res Biogeosc 119:2188–2208

    Article  CAS  Google Scholar 

  • Oberbauer SF, Gillespie CT, Cheng W, Gebauer R, Serra AS, Tenhunen JD (1992) Environmental effects on CO2 efflux from riparian tundra in the northern foothills of the Brooks Range, Alaska, USA. Oecologia 92:568–577

    Article  Google Scholar 

  • Pocock T, Krol M, Huner NPA (2004) The determination and quantification of photosynthetic pigments by reverse phase high-performance liquid chromatography, thin-layer chromatography, and spectrophotometry. In: Carpentier R (ed) Methods in molecular biology, vol 274. Humana Press, New York pp 137–148

  • Porra RJ (2006) Spectrometric assays for plant, algal and bacterial chlorophylls. In: Grimm B, Porra RG, Ruduger W (eds) Advances in photosynthesis and respiration. Springer, Berlin, pp 95–107

    Google Scholar 

  • Ruimy A, Jarvis PG, Baldocchi DD, Saugier B (1995) CO2 fluxes over plant canopies and solar radiation: a review. In: Begon M, Fitter A (eds) Advances in ecological research, vol 26. Elsevier, Amsterdam, pp 1–68

  • Rustad LE, Huntington TG, Boone RF (2000) Controls on soil respiration: implications for climate change. Biogeochem 48:7–20

    Article  Google Scholar 

  • Saarnio S, Wittenmayer L, Merbach W (2004) Rhizospheric exudation of Eriophorum vaginatum L. - Potential link to methanogenesis. Plant and Soil 267:343–355

    Article  CAS  Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry: an analysis of global change, 2nd edn. Academic Press, Waltham

  • Schwarzenbach RP, Gschwend PM, Imboden DM (2003) Environmental chemistry, 2nd edn. Wiley, New York

    Google Scholar 

  • Shaver GR, Johnson LC, Cades DH, Murray G, Laundre JA, Rastetter EG, Nadelhoffer KJ, Giblin AE (1998) Biomass and CO2 flux in wet sedge tundras: responses to nutrients, temperature, and light. Ecol Monograph 68:75–97

    Google Scholar 

  • Sommerfeld RA, Mosier AR, Musselman RC (1993) CO2, CH4 and N2O flux through a Wyoming snowpack and implications for global budgets. Nature 361:140–142

    Article  CAS  Google Scholar 

  • Ström L, Ekberg A, Mastepanov M, Christensen TR (2003) The effect of vascular plants on carbon turnover and methane emissions from a tundra wetland. Glob Chang Biol 9:1185–1192

    Article  Google Scholar 

  • Ström L, Mastepanov M, Christensen TR (2005) Species-specific effects of vascular plants on carbon turnover and methane emissions from wetlands. Biogeochem 75:65–82

    Article  Google Scholar 

  • Stumm W, Morgan JJ (1981) Aquatic chemistry: an introduction emphasizing chemical equilibria in natural waters, 2nd edn. Wiley, New York

    Google Scholar 

  • Thomas KL, Benstead J, Davies KL, Lloyd D (1996) Role of wetland plants in the diurnal control of CH4 and CO2 fluxes in peat. Soil Biol Biochem 28:17–23

    Article  Google Scholar 

  • van der Nat FJWA, Middelburg JJ (1998) Seasonal variation in methane oxidation by the rhizosphere of Phragmites australis and Scirpus lacustris. Aqua Botany 61:95–110

    Article  Google Scholar 

  • von Fischer JC, Rhew RC, Ames GM, Fosdick BK, von Fischer PE (2010) Vegetation height and other controls of spatial variability in methane emissions from the Arctic coastal tundra at Barrow, Alaska. J Geophys Res 115:G00I03. doi:10.1029/2009JG001283

  • West AE, Brooks PD, Fisk MC, Smith LK, Holland EA, Jaeger CH, Babcock S, Lai RS, Schmidt SK (1999) Landscape patterns of CH4 fluxes in an alpine tundra ecosystem. Biogeochem 45:243–264

    Google Scholar 

  • Whalen SC (2005) Biogeochemistry of methane exchange between natural wetlands and the atmosphere. Environ Eng Sci 22:73–94

    Article  CAS  Google Scholar 

  • Wickland KP, Striegl RG, Mast MA, Clow DW (2001) Carbon gas exchange at a southern Rocky Mountain wetland, 1996–1998. Global Biogeochem Cycles 15:321–335

    Article  CAS  Google Scholar 

  • Windell JT, Willard BE, Cooper DJ, Foster SQ, Knud-Hansen CF, Rink LP, Kiladis GN (1986) An ecological characterization of Rocky Mountain montane and subalpline wetlands. U.S. Fishery and Wildlife Services, Washington DC

    Google Scholar 

  • Yvon-Durocher G, Allen AP, Bastviken D, Conrad R, Gudasz C, St-Pierre A, Thanh-Duc N, del Giorgio PA (2014) Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 507:488–491

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to P. Nauer and M. Schroth for help with the flux calculations, and F. Ugolini for help with the DOC measurements. Furthermore we would like to thank C.E. Hoffman, M. Aeppli, I. Erny, B. Sunarjo, S. Vogel, M. Meola and É. Mészáros for the valuable help with lab and field work. We are particularly grateful to A. Lazzaro for help with statistical calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Zeyer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 696 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henneberger, R., Cheema, S., Franchini, A.G. et al. Methane and Carbon Dioxide Fluxes from a European Alpine Fen Over the Snow-Free Period. Wetlands 35, 1149–1163 (2015). https://doi.org/10.1007/s13157-015-0702-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-015-0702-y

Keywords

Navigation