Skip to main content
Log in

Simple Analysis on the Relationship Between Sea Salt Aerosols and Precipitation in the North Pacific Ocean Using the Global Chemical Transport Model Simulation

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The relationship between sea salt aerosol and the precipitation in the North Pacific is analyzed by using the global chemical transport model (GEOS-Chem) simulation and the observations for 1986-2010. It is found that the amount of deep convective cloud increases in the eastern North Pacific when the sea salt concentration increases in the central North Pacific during boreal winter (Dec.-Jan.-Feb.). Concurrently, the amount of precipitation in the eastern North Pacific is enhanced in the high sea salt concentration years because the precipitation over the North Pacific is primarily from deep convective clouds. It is found that the variability of sea salt concentration in the central North Pacific is significantly correlated with both the precipitation and the amount of deep convective cloud in the eastern North Pacific. These results indicate that the sea salt may act to induce the vigorous convection in the North Pacific. These results also imply that the sea salt concentration should be considered in climate models to simulate correctly atmospheric and oceanic variables such as precipitation and cloud.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerman, A. S., O. B. Toon, D. E. Stevens, A. J. Heymsfield, V. Ramanathan, and E. J. Welton, 2000: Reduction of tropical cloudiness by soot. Science, 288, 1042–1047, doi:10.1126/science.288.5468.1042.

    Article  Google Scholar 

  • Alexander, B., R.-J. Park, D. J. Jacob, Q. B. Li, R. M. Yantosca, J. Savarino, C. C. W Lee, and M. H. Thiemens, 2005: Sulfate formation in sea-salt aerosols: Constraints from oxygen isotopes. J. Geophys. Res., 110, D10307, doi:10.1029/2004JD005659.

    Article  Google Scholar 

  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 1227–1230.

    Article  Google Scholar 

  • Altaratz, O., I. Koren, L. A. Remer, and E. Hirsch, 2014: Review: Cloud invigoration by aerosols-coupling between microphysics and dynamics. Atmos. Res., 140, 38–60, doi:10.1016/j.atmosres.2014.01.009.

    Article  Google Scholar 

  • Bréon, F. M., D. Tanré, and S. Generoso, 2002: Aerosol effect on cloud droplet size monitored from satellite. Science, 295, 834–838.

    Article  Google Scholar 

  • Carslaw, K. S., and Coauthors, 2013: Large contribution of natural aerosols to uncertainty in indirect forcing. Nature, 503, 67–71, doi:10.1038/nature12674.

    Article  Google Scholar 

  • Chang, E. K., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15, 2163–2183.

    Article  Google Scholar 

  • Charlson, R. J., J. E. Lovelock, M. O. Andreae, and S. G. Warren, 1987: Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature, 326, 655–661.

    Article  Google Scholar 

  • Chen, D., Y. Wang, M. B. McElroy, K. He, R. M. Yantosca, and P. L. Sager, 2009: Regional CO pollution and export in China simulated by the high-resolution nested-grid GEOS-Chem model. Atmos. Chem. Phys., 9, 3825–3839.

    Article  Google Scholar 

  • Chung, C. E., V. Ramanathan, and J. T. Kiehl, 2002: Effects of the South Asian absorbing haze on the northeast monsoon and surface-air heat exchange. J. Climate, 15, 2462–2476.

    Article  Google Scholar 

  • Clarke, A. D., S. R. Owens, and J. Zhou, 2006: An ultrafine sea-salt flux from breaking waves: Implications for cloud condensation nuclei in the remote marine atmosphere. J. Geophys. Res. 111, D6, doi:10.1029/2005JD006565.

    Article  Google Scholar 

  • Feingold, G., W. L. Eberhard, D. E. Veron, and M. Previdi, 2003: First measurements of the Twomey indirect effect using ground-based remote sensors. Geophys. Res. Lett., 30, 1287, doi:10.1029/2002GL016633.

    Google Scholar 

  • Fountoukis, C., and A. Nenes, 2007: ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+-Ca2+-Mg2+-NH4 +-Na+-SO4 2−-NO3−-Cl−-H2O aerosols. Atmos. Chem. Phys., 7, 4639–4659.

    Article  Google Scholar 

  • Hansen, J., M. Sato, P. Kharecha, G. Russell, D. W. Lea, and M. Siddall, 2007: Climate change and trace gases. Philos. T. Roy. Soc. A., 365, 1925–1954.

    Article  Google Scholar 

  • Haywood, J., and O. Boucher, 2000: Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev. Geophys., 38, 513–543, doi:10.1029/1999RG000078.

    Article  Google Scholar 

  • Ghan, S. J., S. J. Smith, M. Wang, K. Zhang, K. Pringle, K. Carslaw, J. Pierce, S. Bauer, and P. Adams, 2013: A simple model of global aerosol indirect effects. J. Geophys. Res., 118, 6688–6707, doi:10.1002/jgrd.50567.

    Google Scholar 

  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 1552 pp.

    Google Scholar 

  • Jacob, D. J., J. M. Waldman, J. W. Munger, and M. R. Hoffmann, 1986: The H2SO4-HNO3-NH3 system at high humidities and in fogs: 2. Comparison of field data with thermodynamic calculations. J. Geophys. Res., 91, 1089–1096.

    Google Scholar 

  • Jaeglé, L., P. K. Quinn, T. S. Bates, B. Alexander, and J.-T. Lin, 2011: Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations. Atmos. Chem. Phys., 11, 3137–3157, doi: 10.5194/acp-11-3137-2011.

    Article  Google Scholar 

  • Jeing, J. I., and R. J. Park, 2017: Winter monsoon variability and its impact on aerosol concentrations in East Asia. Environ. Pollut., 221, 285–292, doi:10.1016/j.envpol.2016.11.075

    Article  Google Scholar 

  • Jin, F., 2010: Eddy-induced instability for low-frequency variability. J. Atmos. Sci., 67, 1947–1964, doi:10.1175/2009JAS3185.1.

    Article  Google Scholar 

  • Kim, M. J., S.-W. Yeh, R. J. Park, 2016: Effect of sulfate aerosol on East Asian summer monsoon for 1985-2010. Geophys. Res. Letts., 43, 1364–1372, doi:10.1002/2015GL067124.

    Article  Google Scholar 

  • Korhonen, H., K. S. Carslaw, P. M. Forster, S. Mikkonen, N. D. Gordon, and H. Kokkola, 2010: Aerosol climate feedback due to decadal increases in Southern Hemisphere wind speeds. Geophys. Res. Lett., 37, L02805, doi:10.1029/2009GL041320.

    Article  Google Scholar 

  • Lee, S.-S., 2011: Aerosols, clouds and climate. Nat. Geosci., 4, 826–827, doi:10.1038/ngeo1340.

    Article  Google Scholar 

  • Meehl, G. A., J. M. Arblaster, and W. D. Collins, 2008: Effects of black carbon aerosols on the Indian monsoon. J. Climate, 21, 2869–2882, doi:10.1175/2007JCLI1777.1.

    Article  Google Scholar 

  • Monahan, E. C., and I. Muircheartaigh, 1980: Optimal power-law description of oceanic whitecap coverage dependence on wind speed. J. Phys. Oceanogr., 10, 2094–2099, doi:10.1175/1520-0485(1980)010 <2094:OPLDOO>2.0.CO;2.

    Article  Google Scholar 

  • Nakamura, H., T. Izumi, and T. Sampe, 2002: Interannual and decadal modulations recently observed in the Pacific storm track activity and East Asian winter monsoon. J. Climate, 15, 1855–1874, doi:10.1175/1520-0442(2002)015<1855:IADMRO>2.0.CO;2.

    Article  Google Scholar 

  • O'Dowd, C. D., J. A. Lowe, M. H. Smith, B. Davison, H. C. Nicholas, and R. M. Harrison, 1997: Biogenic sulphur emissions and inferred nonsea-salt-sulphate cloud condensation nuclei in and around Antarctica. J. Geophys. Res., 102, 12839–12854, doi:10.1029/96JD02749.

    Article  Google Scholar 

  • Olivier, J. G. J., A. F. Bouwman, J. J. M. Berdowski, C. Veldt, J. P. J. Bloos, A. J. H. Visschedijk, C. W. M. van der Maas, and P. Y. J. Zandveld, 1999: Sectoral emission inventories of greenhouse gases for 1990 on a per country basis as well as on 1 × 1. Environ. Sci. Policy, 2, 241–263, doi:10.1016/S1462-9011(99)00027-1.

    Article  Google Scholar 

  • Park, R. J., D. J. Jacob, B. D. Field, R. M. Yantosca, and M. Chin, 2004: Natural and transboundary pollution influences on sulfate-nitrateammonium aerosols in the United States: Implications for policy. J. Geophys. Res., 109, D15204, doi:10.1029/2003JD004473.

    Article  Google Scholar 

  • Penner, J. E., L. Xu, and M. Wang, 2011: Satellite methods underestimate indirect climate forcing by aerosols. Proc. Natl. Acad. Sci., 108, 13404–13408, doi:10.1073/pnas.1018526108.

    Article  Google Scholar 

  • Regayre, L. A., and Coauthors, 2015: Uncertainty in the magnitude of aerosol-cloud radiative forcing over recent decade. Geophys. Res. Lett., 41, 9040–9049, doi:10.1002/2014GL062029.

    Article  Google Scholar 

  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA's modern-era retrospective analysis for research and applications. J. Climate, 24, 3624–3648, doi:10.1175/JCLI-D-11-00015.1.

    Article  Google Scholar 

  • Rossow, W. B., and R. A. Schiffer, 1991: ISCCP Cloud data products. Bull. Amer. Meteor. Soc., 72, 2–20, doi:10.1175/1520-0477(1991)072 <0002:ICDP>2.0.CO;2.

    Article  Google Scholar 

  • Rotstayn, L. D., and J. E. Penner, 2001: Indirect aerosol forcing, quasi forcing, and climate response. J. Climate, 14, 2960–2975, doi:10.1175/1520-0442(2001)014<2960:IAFQFA>2.0.CO;2.

    Article  Google Scholar 

  • Schmitt, R. W., 1995: The ocean component of the global water cycle. Rev. Geophys., 33, 1395–1409, doi:10.1029/95RG00184.

    Article  Google Scholar 

  • Shaw, G. E., 1983: Bio-controlled thermostasis involving the sulfur cycle. Climatic Change, 5, 297–303.

    Article  Google Scholar 

  • Sievering, H., J. Cainey, M. Harvey, J. McGregor, S. Nichol, and P. Quinn, 2004: Aerosol non-sea-salt sulfate in the remote marine boundary layer under clear-sky and normal cloudiness conditions: Ocean-derived biogenic alkalinity enhances sea-salt sulfate production by ozone oxidation. J. Geophys. Res., 109, D19317, doi:10.1029/2003JD004315.

    Article  Google Scholar 

  • Smith, T. M., and R. W. Reynolds, 2003: Extended reconstruction of global sea surface temperatures based on COADS data (1854-1997). J. Climate, 16, 1495–1510.

    Article  Google Scholar 

  • Song, C. H., and G. R. Carmichael, 2001: A three-dimensional modeling investigation of the evolution processes of dust and sea-salt particles in east Asia. J. Geophys. Res., 106, 18131–18154, doi:10.1029/2000JD-900352.

    Article  Google Scholar 

  • Tang, J., P. Wang, L. J. Mickley, X. Xia, H. Liao, X. Yue, L. Sun, and J. Xia, 2014: Positive relationship between liquid cloud droplet effective radius and aerosol optical depth over Eastern China from satellite data. Atmos. Environ., 84, 244–253, doi:10.1016/j.atmosenv.2013.08.024.

    Article  Google Scholar 

  • Tao, W.-K., J.-P. Chen, Z. Li, C. Wang, and C. Zhang, 2012: Impact of aerosols on convective clouds and precipitation. Rev. Geophys., 50, RG2001, doi:10.1029/2011RG000369.

    Article  Google Scholar 

  • Trenberth, K. E., 2011: Changes in precipitation with climate change. Climate Res., 47, 123–138, doi:10.3354/cr00953.

    Article  Google Scholar 

  • Twomey, S., 1977: The influence of pollution on the short wave albedo of clouds. J. Atmos. Sci., 34, 1149–1152, doi:10.1175/1520-0469(1977) 034<1149:TIOPOT>2.0.CO;2.

    Article  Google Scholar 

  • Twomey, S., M. Piepgrass, and T. L. Wolfe, 1984: An assessment of the impact of pollution on global cloud albedo. Tellus B., 36, 356–366, doi:10.1111/j.1600-0889.1984.tb00254.x.

    Article  Google Scholar 

  • Wang, Y., R. Zhang, and R. Saravanan, 2014: Asian pollution climatically modulates mid-latitude cyclones following hierarchical modelling and observational analysis. Nat. Commun., 5, 3098, doi:10.1038/ncomms4098.

    Article  Google Scholar 

  • Yeh, S.-W., W.-M. Kim, Y. H. Kim, B.-K. Moon, R. J. Park, and C.-K. Song, 2013: Changes in the variability of the North Pacific sea surface temperature caused by direct sulfate aerosol forcing in China in a coupled general circulation model. J. Geophys. Res., 118, 1261–1270, doi:10.1029/2012JD017947.

    Google Scholar 

  • Yeh, S.-W., R. J. Park, M. J. Kim, J. Jeong, and C.-K. Song, 2015: Effect of anthropogenic sulphate aerosol in China on the drought in the westernto-central US. Sci. Rep.-UK, 5, 14305, doi: 10.1038/srep14305.

    Article  Google Scholar 

  • Yeh, S.-W., J. So, J.-W. Lee, M. J. Kim, J. I. Jeong, R. J. Park, 2017: Contributions of Asian pollution and SST forcings on precipitation change in the North Pacific. Atmos. Res., 119, 30–37, doi:10.1016/j.atmosres.2017.03.014.

    Article  Google Scholar 

  • Zhang, R., G. Li, J. Fan, D. L. Wu, and M. J. Molina, 2007: Intensification of Pacific storm track linked to Asian pollution. Proc. Natl. Acad. Sci., 104, 5295–5299, doi:10.1073/pnas.0700618104.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Wook Yeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

So, J., Yeh, SW., Lee, JW. et al. Simple Analysis on the Relationship Between Sea Salt Aerosols and Precipitation in the North Pacific Ocean Using the Global Chemical Transport Model Simulation. Asia-Pacific J Atmos Sci 54, 179–186 (2018). https://doi.org/10.1007/s13143-018-0002-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-018-0002-6

Key words

Navigation