Skip to main content
Log in

Distributional changes in rainfall and river flow in Sarawak, Malaysia

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Climate change may not change the rainfall mean, but the variability and extremes. Therefore, it is required to explore the possible distributional changes of rainfall characteristics over time. The objective of present study is to assess the distributional changes in annual and northeast monsoon rainfall (November-January) and river flow in Sarawak where small changes in rainfall or river flow variability/distribution may have severe implications on ecology and agriculture. A quantile regression-based approach was used to assess the changes of scale and location of empirical probability density function over the period 1980-2014 at 31 observational stations. The results indicate that diverse variation patterns exist at all stations for annual rainfall but mainly increasing quantile trend at the lowers, and higher quantiles for the month of January and December. The significant increase in annual rainfall is found mostly in the north and central-coastal region and monsoon month rainfalls in the interior and north of Sarawak. Trends in river flow data show that changes in rainfall distribution have affected higher quantiles of river flow in monsoon months at some of the basins and therefore more flooding. The study reveals that quantile trend can provide more information of rainfall change which may be useful for climate change mitigation and adaptation planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn, K.-H., and R. Palmer, 2016: Regional flood frequency analysis using spatial proximity and basin characteristics: Quantile regression vs. parameter regression technique. J. Hydrol., 540, 515–526, doi:10.1016/j.jhydrol.2016.06.047.

    Google Scholar 

  • Aldrian, E., and Y. S. Djamil, 2008: Spatio-temporal climatic change of rainfall in east Java Indonesia. Int. J. Climatol., 28, 435–448, doi:10. 1002/joc.1543.

    Article  Google Scholar 

  • Aldrian, E., L. D. Gates, and F. H. Widodo, 2003: Variability of Indonesian Rainfall and the Influence of ENSO and Resolution in ECHAM4 simulations and in the Reanalyses, MPI Report 346, 30 pp.

    Google Scholar 

  • Caesar, J., and Coauthors, 2011: Changes in temperature and precipitation extremes over the Indo-Pacific region from 1971 to 2005. Int. J. Climatol., 31, 791–801, doi:10.1002/joc.2118.

    Article  Google Scholar 

  • Chamaillé-Jammes, S., H. Fritz, and F. Murindagomo, 2007: Detecting climate changes of concern in highly variable environments: Quantile regressions reveal that droughts worsen in Hwange National Park, Zimbabwe. J. Arid Environ., 71, 321–326, doi:10.1016/j.jaridenv. 2007.05.005.

    Article  Google Scholar 

  • Chase, T. N., R. A. Pielke, T. G. F. Kittel, R. R. Nemani, and S. W. Running, 2000: Simulated impacts of historical land cover changes on global climate in northern winter. Climate. Dyn., 16, 93–105.

    Article  Google Scholar 

  • da Silva, V. D. P. R., A. F. Belo Filho, R. S. R. Almeida, R. M. de Holanda, and J. H. B. da Cunha Campos, 2016: Shannon information entropy for assessing space-time variability of rainfall and streamflow in semiarid region. Sci. Total Environ., 544, 330–338, doi:10.1016/j.scitotenv.2015.11.082.

    Article  Google Scholar 

  • Deni, S. M., J. Suhaila, W. Z. W. Zin, and A. A. Jemain, 2010: Spatial trends of dry spells over Peninsular Malaysia during monsoon seasons. Theor. Appl. Climatol., 99, 357–371, doi:10.1007/s00704-009-0147-4.

    Article  Google Scholar 

  • Dindang, A., C. N. Chung, and S. Seth, 2011: Heavy Rainfall Episodes over Sarawak during January-February 2011 Northeast Monsoon. JMM Research Publication, No.11/2011, 41 pp.

    Google Scholar 

  • Dindang, A., A. B. Taat, P. E. Beng, A. B. Mohd Alwi, A. A. Mandai, S. F. B. Mat Adam, F. S. B. Othman, D. N. B. Awang Bina, and D. Lah, 2013: Statistical and Trend Analysis of Rainfall Data in Kuching, Sarawak from 1968-2010. JMM Research Publication, No. 6/2013, 17 pp.

    Google Scholar 

  • Easterling, D. R., J. L. Evans, P. Y. Groisman, T. R. Karl, K. E. Kunkel, and P. Ambenje, 2000: Observed variability and trends in extreme climate events: A brief review. Bull. Amer. Meteor. Soc., 81, 417–425, doi:10.1175/1520-0477(2000)081<0417:OVATIE>2.3.CO;2.

    Article  Google Scholar 

  • Feng, X., A. Porporato, and I. Rodriguez-Iturbe, 2013: Changes in rainfall seasonality in the tropics. Nat. Clim. Change, 3, 811–815, doi:10.1038/nclimate1907.

    Article  Google Scholar 

  • Forest Department Sarawak, 2013: Sarawak Forest Department Annual Report 2013. 102 pp.

  • Gitau, M., 2016: Long-term seasonality of rainfall in the southwest Florida Gulf coastal zone. Climate Res. 69, 93–105, doi:10.3354/cr01399.

    Article  Google Scholar 

  • Gocic, M., and S. Trajkovic, 2013: Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Glob. Planet. Change, 100, 172–182, doi:10.1016/j.gloplacha. 2012.10.014.

    Article  Google Scholar 

  • Güçlü, Y. S., 2016: Comments on “Comparison of Mann-Kendall and innovative trend method for water quality parameters of the Kizilirmak River, Turkey (Kisi and Ay, 2014)” and “An innovative method for trend analysis of monthly pan evaporations (Kisi, 2015)”. J. Hydrol., 538, 878–882, doi:10.1016/j.jhydrol.2016.04.064.

    Article  Google Scholar 

  • Harun, R., J. W. S. Yip, S. Thiruvenkadam, W. A. W. A. K. Ghani, T. Cherrington, and M. K. Danquah, 2014: Algal biomass conversion to bioethanol-a step-by-step assessment. Biotech. J., 9, 73–86, doi:10.1002/biot.201200353.

    Article  Google Scholar 

  • Hidayat, R., and S. Kizu, 2010: Influence of the Madden-Julian Oscillation on Indonesian rainfall variability in austral summer. Int. J. Climatol., 30, 1816–1825, doi:10.1002/joc.2005.

    Google Scholar 

  • Hua, T. M., R. C. Y. Hui, and R. Husen, 2013: Trends of rainfall in Sarawak from 1999 to 2008. Proc., The International Conf. on Social Science Research, Penang, WorldConferences.net, 261–269.

    Google Scholar 

  • IPCC, 2013: Summary for Policymakers. Climate Change 2013}: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al. Eds., Cambridge University Press, Cambridge, 1-27

  • Jeon, J.-J., J. H. Sung, and E.-S. Chung, 2016: Abrupt change point detection of annual maximum precipiration using fused lasso. J. Hydrol., 538, 831–841, doi:10.1016/j.jhydrol.2016.04.043.

    Article  Google Scholar 

  • Jury, M. R., 2015: Climatic trends in Puerto Rico: Observed and projected since 1980. Climate Res., 66, 113–123, doi:10.3354/cr01338.

    Article  Google Scholar 

  • Kendall, M. G., 1948: Rank correlation methods, doi:10.2307/2333282.

    Google Scholar 

  • Koenker, R., 2013: Quantreg: Quantile Regression. R package version 5.05. 98 pp. [Available at http://CRAN.R-project.org/package= quantreg.]

    Google Scholar 

  • Koenker, R., and G. Bassett Jr., 1978: Regression quantiles. Econometrica, 46, 33–50, doi:10.2307/1913643.

    Article  Google Scholar 

  • Kottek, M., J. Grieser, C. Beck, B. Rudolf, and F. Rubel, 2006: World map of the Köppen-Geiger climate classification updated. Meteorol. Z., 15, 259–263, doi:10.1127/0941-2948/2006/0130.

    Article  Google Scholar 

  • Lau, K. M., and H.-T. Wu, 2007: Detecting trends in tropical rainfall characteristics, 1979-2003. Int. J. Climatol., 27, 979–988, doi:10.1002/joc.1454.

    Article  Google Scholar 

  • Mann, H. B., 1945: Nonparametric tests against trend. Economet. Soc., 13, 245–259, doi:10.2307/1907187.

    Article  Google Scholar 

  • Mayowa, O. O., S. H. Pour, S. Shahid, M. Mohsenipour, S. B. Harun, A. Heryansyah, and T. Ismail, 2015: Trends in rainfall and rainfall-related extremes in the east coast of peninsular Malaysia. J. Earth Syst. Sci., 124, 1609–1622, doi:10.1007/s12040-015-0639-9.

    Article  Google Scholar 

  • Moron, V., A. W. Robertson, and J.-H. Qian, 2010: Local versus regionalscale characteristics of monsoon onset and post-onset rainfall over Indonesia. Climate Dyn., 34, 281–299, doi:10.1007/s00382-009-0547-2.

    Article  Google Scholar 

  • Muhlbauer, A., P. Spichtinger, and U. Lohmann, 2009: Application and comparison of robust linear regression methods for trend estimation. J. Appl. Meteor. Climatol., 48, 1961–1970. doi:10.1175/2009jamc1851.1.

    Article  Google Scholar 

  • Ong, H. C., T. M. I. Mahlia, and H. H. Masjuki, 2011: A review on energy scenario and sustainable energy in Malaysia. Renew. Sustain. Energ. Rev., 15, 639–647, doi:10.1016/j.rser.2010.09.043.

    Article  Google Scholar 

  • Panda, D. K., P. Panigrahi, S. Mohanty, R. K. Mohanty, and R. R. Sethi, 2016: The 20th century transitions in basic and extreme monsoon rainfall indices in India: Comparison of the ETCCDI indices. Atmos. Res., 181, 220–235, doi:10.1016/j.atmosres.2016.07.002.

    Article  Google Scholar 

  • Paterson, R. R. M., L. Kumar, S. Taylor, and N. Lima, 2015: Future climate effects on suitability for growth of oil palms in Malaysia and Indonesia. Sci. Rep., 5, 14457, doi:10.1038/srep14457.

    Article  Google Scholar 

  • Pour, S. H., S. B. Harun, and S. Shahid, 2014: Genetic programming for the downscaling of extreme rainfall events on the east coast of peninsular Malaysia. Atmosphere, 5, 914–936, doi:10.3390/atmos5040914.

    Article  Google Scholar 

  • Qin, W., Q. Guo, C. Zuo, Z. Shan, L. Ma, and G. Sun, 2016: Spatial distribution and temporal trends of rainfall erosivity in mainland China for 1951-2010. Catena, 147, 177–186, doi:10.1016/j.catena.2016.07.006.

    Article  Google Scholar 

  • Robertson, A. W., V. Moron, J.-H. Qian, C.-P. Chang, F. Tangang, E. Aldrian, T. Y. Koh, and L. Juneng, 2011: The maritime continent monsoon. The Global Monsoon System: Research and Forecast, 2nd Ed., C. P. Chang et al. Eds., World Scientific Publication Company, 608 pp.

    Google Scholar 

  • Salahuddin, A., and S. Curtis, 2011: Climate extremes in Malaysia and the equatorial South China Sea. Global Planet. Change, 78, 83–91, doi: 10.1016/j.gloplacha.2011.05.001.

    Article  Google Scholar 

  • Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall’s tau. J. Amer. Stat. Assoc., 63, 1379–1389, doi:10.1080/01621459.1968.10480934.

    Article  Google Scholar 

  • Shahid, S., 2010: Recent trends in the climate of Bangladesh. Climate Res., 42, 185–193, doi:10.3354/cr00889.

    Article  Google Scholar 

  • Shahid, S., S. B. Harun, and A. Katimon, 2012: Changes in diurnal temperature range in Bangladesh during the time period 1961-2008. Atmos. Res., 118, 260–270, doi:10.1016/j.atmosres.2012.07.008.

    Article  Google Scholar 

  • Shiau, J.-T., and W.-H. Huang, 2015: Detecting distributional changes of annual rainfall indices in Taiwan using quantile regression. J. Hydro-Environ. Res., 9, 368–380, doi:10.1016/j.jher.2014.07.006.

    Article  Google Scholar 

  • Singh, G., 1991: Ganoderma -the scourge of oil palm in the coastal areas. Proc. of Ganoderma workshop, Bangi, Palm Oil Research Institute of Malaysia, 7–35.

    Google Scholar 

  • Sonali, P., and D. N. Kumar, 2013: Review of trend detection methods and their application to detect temperature changes in India. J. Hydrol., 476, 212–227, doi:10.1016/j.jhydrol.2012.10.034.

    Article  Google Scholar 

  • Suepa, T., J. Qi, S. Lawawirojwong, and J. P. Messina, 2016: Understanding spatio-temporal variation of vegetation phenology and rainfall seasonality in the monsoon Southeast Asia. Environ. Res., 147, 621–629, doi:10.1016/j.envres.2016.02.005.

    Article  Google Scholar 

  • Suhaila, J., S. M. Deni, W. Z. W. Zin, and A. A. Jemain, 2010: Spatial patterns and trends of daily rainfall regime in Peninsular Malaysia during the southwest and northeast monsoons: 1975-2004. Meteor. Atmos. Phys., 110, 1–18, doi:10.1007/s00703-010-0108-6.

    Article  Google Scholar 

  • Sung, J. H., E.-S. Chung, Y. Kim, and B.-R. Lee, 2015: Meteorological hazard assessment based on trends and abrupt changes in rainfall characteristics on the Korean peninsula. Theor. Appl. Climatol., 127, 305–326, doi:10.1007/s00704-015-1581-0.

    Article  Google Scholar 

  • Tangang, F. T., L. Juneng, and S. Ahmad, 2007: Trend and interannual variability of temperature in Malaysia: 1961-2002. Theor. Appl. Climatol., 89, 127–141, doi:10.1007/s00704-006-0263-3.

    Article  Google Scholar 

  • Tangang, F. T., L. Juneng, E. Salimun, P. N. Vinayachandran, Y. K. Seng, C. J. C. Reason, S. K. Behera, and T. Yasunari, 2008: On the roles of the northeast cold surge, the Borneo vortex, the Madden-Julian Oscillation, and the Indian Ocean Dipole during the extreme 2006/2007 flood in southern Peninsular Malaysia. Geophys. Res. Lett., 35, L14S07, doi:10. 1029/2008GL033429.

    Article  Google Scholar 

  • Tareghian, R., and P. F. Rasmussen, 2013: Statistical downscaling of precipitation using quantile regression. J. Hydrol., 487, 122–135, doi:10. 1016/j.jhydrol.2013.02.029.

    Article  Google Scholar 

  • Timofeev, A. A., and A. M. Sterin, 2010: Using the quantile regression method to analyze changes in climate characteristics. Russian Meteorol. Hydrol., 35, 310–319, doi:10.3103/s106837391005002x.

    Article  Google Scholar 

  • Toriman, M. E., J. J. Pereira, M. B. Gasim, S. A. Sharifah Mastura, and N. A. A. Aziz, 2009: Issues of climate change and water resources in peninsular Malaysia: The case of north Kedah. Arab World Geogr., 12, 87–94.

    Google Scholar 

  • Wang, W., W. Zhou, S. K. Fong, K. C. Leong, I. M. Tang, S. W. Chang, and W. K. Leong, 2015: Extreme rainfall and summer heat waves in Macau based on statistical theory of extreme values. Climate Res., 66, 91–101, doi:10.3354/cr01336.

    Article  Google Scholar 

  • Wang, X.-J., J.-Y. Zhang, S. Shahid, E.-H. Guan, Y.-X. Wu, J. Gao, and R.-M. He, 2016: Adaptation to climate change impacts on water demand. Mitig. Adapt. Strateg. Glob. Change, 21, 81–99, doi:10.1007/s11027-014-9571-6.

    Article  Google Scholar 

  • Wassmann, R., and Coauthors, 2009: Regional vulnerability of climate change impacts on Asian rice production and scope for adaptation. Adv. Agron., 102, 91–133.

    Article  Google Scholar 

  • Wong, C. L., R. Venneker, S. Uhlenbrook, A. B. M. Jamil, and Y. Zhou, 2009: Variability of rainfall in peninsular Malaysia. Hydrol. Earth Syst., 6, 5471–5503.

    Article  Google Scholar 

  • Yik, D. J., Y. W. Sang, M. K. Mat Adam, N. K. Chang, F. Yunus, and M. H. Abdullah, 2015: The Definitions of the Southwest Monsoon Climatological Onset and Withdrawal over Malaysian Region. JMM Research Publication, No. 3/2015, 30 pp.

    Google Scholar 

  • Yusuf, A. A., and H. A. Francisco, 2009: Climate Change Vulnerability Mapping for Southeast Asia. Economy and Environment Program for Southeast Asia (EEPSEA), Singapore, 10–15.

    Google Scholar 

  • Ziegler, A. D., J. Sheffield, E. P. Maurer, B. Nijssen, E. F. Wood, and D. P. Lettenmaier, 2003: Detection of intensification in global-and continental-scale hydrological cycles: Temporal scale of evaluation. J. Climate, 16, 535–547, doi:10.1175/1520-0442(2003)016<0535:DOIIGA>2.0.CO;2.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shamsuddin Shahid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sa’adi, Z., Shahid, S., Ismail, T. et al. Distributional changes in rainfall and river flow in Sarawak, Malaysia. Asia-Pacific J Atmos Sci 53, 489–500 (2017). https://doi.org/10.1007/s13143-017-0051-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-017-0051-2

Keywords

Navigation