Skip to main content
Log in

Projections of high resolution climate changes for South Korea using multiple-regional climate models based on four RCP scenarios. Part 1: surface air temperature

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

We projected surface air temperature changes over South Korea during the mid (2026-2050) and late (2076-2100) 21st century against the current climate (1981-2005) using the simulation results from five regional climate models (RCMs) driven by Hadley Centre Global Environmental Model, version 2, coupled with the Atmosphere- Ocean (HadGEM2-AO), and two ensemble methods (equal weighted averaging, weighted averaging based on Taylor’s skill score) under four Representative Concentration Pathways (RCP) scenarios. In general, the five RCM ensembles captured the spatial and seasonal variations, and probability distribution of temperature over South Korea reasonably compared to observation. They particularly showed a good performance in simulating annual temperature range compared to HadGEM2-AO. In future simulation, the temperature over South Korea will increase significantly for all scenarios and seasons. Stronger warming trends are projected in the late 21st century than in the mid-21st century, in particular under RCP8.5. The five RCM ensembles projected that temperature changes for the mid/late 21st century relative to the current climate are +1.54°C/+1.92°C for RCP2.6, +1.68°C/+2.91°C for RCP4.5, +1.17°C/+3.11°C for RCP6.0, and +1.75°C/+4.73°C for RCP8.5. Compared to the temperature projection of HadGEM2-AO, the five RCM ensembles projected smaller increases in temperature for all RCP scenarios and seasons. The inter-RCM spread is proportional to the simulation period (i.e., larger in the late-21st than mid-21st century) and significantly greater (about four times) in winter than summer for all RCP scenarios. Therefore, the modeled predictions of temperature increases during the late 21st century, particularly for winter temperatures, should be used with caution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali, S., D. Li, F. Congbin, and Y. Yang, 2015: Performance of convective parameterization schemes in Asia using RegCM: Simulation in three typical regions for the period 1998-2002. Adv. Atmos. Sci., 5, 715–730.

    Article  Google Scholar 

  • Baek, H. J, and Coauthors, 2013: Climate change in the 21st century simulated by HadGEM2-AO under representative concentration pathways. Asia-Pac. J. Atmos. Sci., 49(5), 603–618, doi:10.1007/s13143-013-0053-7.

    Article  Google Scholar 

  • Boo, K. O., W. T. Kwon, and H. J. Baek, 2006: Change of extreme events of temperature and precipitation over Korea using regional projection of future climate change. Geophy. Res. Lett., 33(1), L01701, doi:10.1029/2005GL023378.

    Article  Google Scholar 

  • Cha, D. H., and D. K. Lee, 2009: Reduction of systematic errors in regional climate simulations of the summer monsoon over East Asia and the western North Pacific by applying the spectral nudging technique. J. Geophys. Res., 114, D14108, doi:10.1029/2008JD011176.

    Article  Google Scholar 

  • Cha, D. H., D. K. Lee, and S. Y. Hong, 2008: Impact of boundary layer processes on seasonal simulation of the East Asian summer monsoon using a regional climate model. Meteorol. Atmos. Phys., 100, 53–72.

    Article  Google Scholar 

  • Christensen, J. H., E. Kjellström, F. Giorgi, G. Lenderink, and M. Rummukainen, 2010: Weight assignment in regional climate models. Clim. Res., 44, 179–194.

    Article  Google Scholar 

  • Evans, J. P., F. Ji, G. Abramowitz, and M. Ekstrom, 2013: Optimally choosing small ensemble members to produce robust climate simulations. Environ. Res. Lett., 8, 044–050.

    Article  Google Scholar 

  • Fu, C., S. Wang, Z. Xiong, W. Gutowski, D. K. Lee, J. L. Mc-Gregor, Y. Sato, H. Kato, J.-W. Kim, and M.-S. Suh, 2005: Regional climate model intercomparison project for Asia. Bull. Amer. Meteor. Soc., 77, 437–471.

    Google Scholar 

  • Giorgi, F., 1990: Simulation of regional climate using a limited area model nested in a general circulation model. J. Climate, 3, 941–963.

    Article  Google Scholar 

  • Giorgi, F., E. Coppola, F. Raffaele, G. T. Diro, R. Fuentes-Franco, G. Giuliani, A. Mamgain, M. P. Liopart, L Mariotti, and C. Torma, 2014: Changes in extremes and hydroclimatic regimes in the CREMA ensemble projection. Climatic Change, 125, 39–51.

    Article  Google Scholar 

  • Giorgi, F., E. Coppola, F. Solmon, L. Mariotti, and others, 2012: RegCM4: model description and preliminary test over multi CORDEX domains. Clim. Res., 52, 7–29.

    Article  Google Scholar 

  • Giorgi, F., B. Hewitson, J. Christensen, M. Hulme, H. Von Storch, P. Whetton, R. Jones, L. Mearns, and C. Fu, 2001: Regional Climate Information: Evaluation and Projections (Chapter 10). In Climate Change 2001: The Scientific Basis, Contribution of Working 32 Group I to the Third Assessment Report of the IPCC, Cambridge University Press, 739–768.

    Google Scholar 

  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: Description of the fifth generation Penn State/NCAR mososcale model (MM5). Tech. Rep. TN-398+STR, NCAR, Boulder, Colorado, 121 p.

    Google Scholar 

  • Hewitt, H. T., D. Copsey, I. D. Culverwell, C. M. Harris, R. S. R. Hill, A. B. Keen, A. J. McLaren, and E. C. Hunke, 2010: Design and implementation of the infrastructure of HadGEM3: the next-generation Met Office climate modeling system. Geosci. Model Dev. Discuss., 3, 1861–1937.

    Article  Google Scholar 

  • Ho, C. H., J. Y. Lee, M. H. Ahn, and H. S. Lee, 2003: A sudden change in summer rainfall characteristics in Korea during the late 1970s. Int. J. Climatol., 23, 117–128.

    Article  Google Scholar 

  • Hong, J. Y., and J. B. Ahn, 2015: Changes of early summer precipitation in the Korean Peninsula and nearby regions based on RCP simulations. J. Climate, 28, 3557–3578.

    Article  Google Scholar 

  • Hong, S. Y., and E. C. Chang, 2012: Spectral nudging sensitivity experiments in a regional climate model. Asia-Pac. J. Atmos. Sci., 48, 345–355.

    Article  Google Scholar 

  • Hong, S. Y., H. Park, H. B. Cheong, J. E. E. Kim, M. S. Koo, J. Jang, S. Ham, S. O. Hwang, B. K. Park, E. C. Chang, and H. Li, 2013: The global/regional integrated model system (GRIMs). Asia-Pac. J. Atmos. Sci., 49, 219–243.

    Article  Google Scholar 

  • Im, E. S., J. B. Ahn, and W. T. Kwon, 2007: Multi-decadal scenario simulation over Korea using a one-way double -nested regional climate model system. Part 2: future climate projection (2021-2050). Clim. Dynam., 20, 239–254.

    Google Scholar 

  • Imbert, A. and R. Benestad, 2005: An improvement of analog model strategy for more reliable local climate change scenarios. Theor. Appl. Climatol., 82, 245–255.

    Article  Google Scholar 

  • IPCC, 2007: Synthesis report. Contribution of working groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Climate Change, Geneva, 104 p.

  • IPCC, 2012: Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press, 582 pp.

  • IPCC, 2014: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Climate Change 2013, Cambridge University Press, 1535 p.

  • Jacob, D., and Coauthors, 2007: An inter-comparison of regional climate models for Europe: model performance in present-day climate. Climatic Change, 81, 31–52.

    Article  Google Scholar 

  • Kalognomou, E. A., and Coauthors, 2013: A diagnostic evaluation of precipitation in CORDEX Models over Southern Africa. J. Climate, 26, 9477–9506.

    Article  Google Scholar 

  • Kang, H. S., and S. Y. Hong, 2008: Sensitivity of the simulated East Asian summer monsoon climatology to four convective parameterization schemes. J. Geophys. Res., 113, D15119, doi:10.1029/2007JD009692.

    Article  Google Scholar 

  • Kendon, E. J, R. G., Jones, E. Kjellstrom, and J. M. Murphy, 2010: Using and designing GCM-RCM ensemble regional climate projection. J. Climate, 23, 6485–6503.

    Article  Google Scholar 

  • Kharin, V. V., F. W. Zwiers, X. Zhang, and M. Wehner, 2012: Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim., Change, doi:10.1007/s10584-013-0705-8.

    Google Scholar 

  • Kim, C. S., M. S. Suh, and K. O. Hong, 2009: Bayesian change point analysis of the annual maximum of daily and sub-daily precipitation over South Korea. J. Climate, 22, 6741–6757.

    Article  Google Scholar 

  • Kimoto, M., 2005: Simulated change of the East Asian circulation under the global warming scenario. Geophys. Res. Lett., 32, L16701, doi: 10.1029/2005GL023383.

    Article  Google Scholar 

  • KMA, 2014: Korean climate change assessment report 2014. Korea Meteorological Administration, 153 pp.

  • Knutti, R., and J. Sedlacek, 2012: Robustness and uncertainties in the new CMIP5 climate model projections, Nat. Clim. Change, 3, 369–373.

    Article  Google Scholar 

  • Lee, D. K., and M. S. Suh, 2000: Ten-year East Asian summer monsoon simulation using a regional climate model (RegCM2). J. Geophys. Res., 105, 29565–29577.

    Article  Google Scholar 

  • Lee, D. K., D. H. Cha, and S. J. Choi, 2005: A sensitivity study of regional climate simulation to convective parameterization schemes for 1998 East Asian summer monsoon. J. Terres. Atmos. Ocea. Sci., 16, 989–1015.

    Google Scholar 

  • Lee, D. K., D. H. Cha, and H. S. Kang, 2004: Regional climate simulation for the 1998 summer flood over East Asia. J. Meteor. Soc. Japan, 82, 1735–1753.

    Article  Google Scholar 

  • Lee, J. W., S. Y. Hong, E. C. Chang, M. S. Suh, and H. S. Kang, 2014: Assessment of future climate change over East Asia due to the RCP scenarios downscaled by GRIMs-RMP. Clim. Dynam., 42, 733–747.

    Article  Google Scholar 

  • Li, Q., and Coauthors, 2016: Building Asian climate change scenario by multi-regional climate models ensemble. Part II: mean precipitation. Int. J. Clmatol., doi:10.1002/joc.4633.

    Google Scholar 

  • Meehl, G. A., G. J. Boer, C. Covey, M. Latif, and R. J. Stouffer, 2000: The coupled model intercomparison project (CMIP). Bull. Amer. Meteor. Soc., 81, 313–318.

    Article  Google Scholar 

  • Min, S. K., S. Legutke, A. Hense, U. Cubasch, W. T. Kwon, J. H. Oh, and U. Schlese, 2006: East Asian climate change in the 21st century as simulated by the coupled climate model ECHO-G under IPCC SRES scenarios. J. Meteor. Soc. Japan, 84, 1–26.

    Article  Google Scholar 

  • Min, S. K., and coauthors, 2015: Changes in weather and climate extremes over Korea and possible cause: A review. Asia-Pac. J. Atmos. Sci., 51, 103–121.

    Article  Google Scholar 

  • Moss R, and coauthors, 2008: Towards new scenarios for analysis of emissions, climate change, impacts, and response strategies, Technical Summary. Intergovernmental Panel on Climate Change, Geneva, 25 pp.

    Google Scholar 

  • Oh, J. H., T. Kim, M. K. Kim, S. H. Lee, S. K. Min, and W. T. Kwon, 2004: Regional climate simulation for Korea using dynamic downscaling and statistical adjustment. J. Meteor. Soc. Japan, 82, 1629–1643.

    Article  Google Scholar 

  • Oh, S. G., and M. S. Suh, 2016: Comparison of projection Skills of deterministic ensemble methods using pseudo-simulation data generated from multivariate Gaussian distribution. Theor. Appl. Climatol., doi: 10.1007/s00704-016-1782-1.

    Google Scholar 

  • Oh, S. G., J. H. Park, S. H. Lee, and M. S. Suh, 2014: Assessment of the RegCM4 over East Asia and future precipitation change adapted to the RCP scenarios. J. Geophys. Res. Atmos., 119, 2913–2927.

    Article  Google Scholar 

  • Oh, S. G., M. S. Suh, Y. S. Lee, J. B. Ahn, D. H. Cha, D. K. Lee, S. Y. Hong, S. K. Min, S. C. Park, and H. S. Kang, 2015: Projection of high resolution climate changes for South Korea using multiple-regional climate models based on four RCP scenarios. Part 2: Precipitation. Asia-Pac. J. Atmos. Sci., 52, doi:10.1007/s13143-016-0018-8.

  • Pal, J. S., and Coauthors, 2007: Regional climate modeling for the developing world: The ICTP RegCM3 and RegCNET. Bull. Amer. meteor. Soc., 88, 1395–1409.

    Article  Google Scholar 

  • Palmer, T. N., and Coauthors, 2004: Development of a European multimodel ensemble system for seasonal to interannual prediction (DEMETER). Bull. Amer. Meteor. Soc., 85, 853–872.

    Article  Google Scholar 

  • Park, C., S. K. Min, D. Lee, D. H. Cha, and M. S., Suh, 2015: Evaluation of multiple regional climate models for summer climate extremes over East Asia. Clim. Dynam., 46, 2469–2486.

    Article  Google Scholar 

  • Park, J.-H., S.-G. Oh, and M.-S. Suh, 2013: Impacts of boundary conditions on the precipitation simulation of RegCM4 in the CORDEX East Asia domain. J. Geophys. Res., 118, 1652–1667.

    Google Scholar 

  • Peng, P., A, Kumar, A.H., van den Dool, and A. G., Barnston, 2002: An analysis of multi-model ensemble predictions for seasonal climate anomalies. J. Geophys. Res., 107, doi:10.1029/2002JD002712.

  • Seo, K. H., J. Ok, and J. H. Son, 2013: Assessing future change in the East Asian summer monsoon using CMIP5 coupled models. J. Climate, 26, 7662–7675.

    Article  Google Scholar 

  • Sillmann, J., V. V. Kharin, X. Zhang, and F. W. Zwiers, 2013: Climate extreme indices in the CMIP multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res. Atmos., 118, 1716–1733.

    Article  Google Scholar 

  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note. NCAR/TN-468+STR, National Center for Atmospheric Research, Boulder, CO, 100 pp.

    Google Scholar 

  • Sperber, K.-R., H. Annamalai, I.-S. Kang, A. Kitoh, A. Moise, A. Turner, B. Wang, and T. Zhou, 2013: The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century, Clim. Dynam., 41, 2711–2744.

    Article  Google Scholar 

  • Suh, M. S., and D. K. Lee, 2004: Impacts of land use/cover changes on surface climate over east Asia for extreme climate cases using RegCM2. J. Geophys. Res., 109, D02108, doi:10.1029/2003JD003681.

    Article  Google Scholar 

  • Suh, M. S., S. G. Oh, D. K. Lee, D. H. Cha, S. J. Choi, C. S. Jin, and S. Y. Hong, 2012: Development of new ensemble methods based on the performance skills of regional climate models over South Korea. J. Climate, 25, 7067–7082.

    Article  Google Scholar 

  • Sung, J. H., H. S. Kang, S. H. Park, C. H. Cho, D. H. Bae, and Y. O. Kim, 2012: Projection of extreme precipitation at the end of 21st century over South Korea based on representative concentration pathways (RCP), Atmosphere, 22, 221–231 (in Korean with English abstract).

    Article  Google Scholar 

  • Tang, J. P., and Coauthors, 2016: Building Asian climate change scenario by multi-regional climate models ensemble. Part I: surface air temperature. Int. J. Climatol., doi: 10.1002/joc.4628.

    Google Scholar 

  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 7183–7192.

    Article  Google Scholar 

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An Overview of CMIP5 and the Experiment Design. Bull. Am. Meteor. Soc., 93, 485–498.

    Article  Google Scholar 

  • van der Linden, P., and J. F. Mitchell, 2009: ENSEMBLES: Climate change and its impacts: Summary of research and results from the ENSEMBLES project. Met Office Hadley Centre Tech. Rep., 160 pp.

    Google Scholar 

  • van Vuuren D. P., J. Edmonds, M. Kainuma, K. Riahi, A. Thomon, K. Hibbard, G. C. Hurtt, T. Kram, V. Krey, J. F. Lamarque, T. Masui, M Meinshausen, N. Nakicenovic, S. J. Smith, and S. K. Rose, 2011: The representative concentration pathways: an overview. Climatic Change, 109, 5–31.

    Article  Google Scholar 

  • von Storch, H., H. Langerberg, and F. Feser, 2000: A spectral nudging technique for dynamical downscaling purposes. Mon. Wea. Rev., 128, 3664–3673.

    Article  Google Scholar 

  • Wang, S.-Y., R. R. Gillies, E. S. Takle, and W. J. Gutowski Jr., 2009: Evaluation of precipitation in the inter-mountain region as simulated by NARCCAP regional climate models. Geophys. Res. Lett., 36, L11704, doi:10.1029/2009GL037930.

    Article  Google Scholar 

  • Weigel, A.P., R. Knutti, M.A. Liniger, and C. Appenzeller, 2010: Risks of model weighting in multimodel climate projections. J. Climate, 23, 4175–4191.

    Article  Google Scholar 

  • Xin, X., Z. Li, J. Zhang, T. Wu, and Y. J. Fang, 2013: Climate change projections over East Asia with BCC_CSM1.1 climate model under RCP scenarios. J. Meteor. Soc. Japan, 91, 413–429.

    Article  Google Scholar 

  • Xu, Z., and Z. L. Yang, 2012: An improved dynamical downscaling method with GCM bias corrections and its validation with 30 years of climate simulations. J. Climate, 25, 6271–6286.

    Article  Google Scholar 

  • Yatagai, A., K. Kamiguchi, O. Arakawa, A. Hamada, N. Yasutomi, and A. Kitoh, 2012: APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Amer. Meteor. Soc., 93, 1401–1415.

    Article  Google Scholar 

  • Yhang Y. B., and S.-Y. Hong, 2008: Improved physical processes in a regional climate model and their impact on the simulated summer monsoon circulations over East Asia. J. Climate, 21, 963–979.

    Article  Google Scholar 

  • Yin, H., and M. G. Donat, L. V. Alexander, Y. Sun, 2014: Multi-dataset comparison of gridded observed temperature and precipitation over China. Int. J. Climatol., 35, 2809–2827.

    Article  Google Scholar 

  • Zhang, D. F., X. J. Gao, L. C. Ouyang, and W. J. Dong, 2008: Simulation of present climate over East Asia by a regional climate model. J. Tropical Meteor., 14, 19–23.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seok-Geun Oh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suh, MS., Oh, SG., Lee, YS. et al. Projections of high resolution climate changes for South Korea using multiple-regional climate models based on four RCP scenarios. Part 1: surface air temperature. Asia-Pacific J Atmos Sci 52, 151–169 (2016). https://doi.org/10.1007/s13143-016-0017-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-016-0017-9

Key words

Navigation