Skip to main content

Advertisement

Log in

Exploration of a simple model for ice ages

  • Original Paper
  • Published:
GEM - International Journal on Geomathematics Aims and scope Submit manuscript

Abstract

We argue that, while Milanković variations in solar radiation undoubtedly have a major influence on the timing of the Quaternary ice ages, they are partly incidental to their underlying causes. Based on observations of the significance of CO2, we propose a conceptually simple (but complicated in detail) energy balance type model which has the ability to explain the underlying oscillatory nature of ice ages. We are led to develop a model which combines ice sheet growth and atmospheric energy balance with ocean carbon balance. In order to provide results which mimic the basic features of the observations, we develop novel hypotheses as follows. The succession of the most recent ice ages can be explained as being due to an oscillation due to the interaction of the growing northern hemisphere ice sheets and proglacial lakes which form as they migrate south. The CO2 signal which faithfully follows the proxy temperature signal can then be explained as being due to a combination of thermally activated ocean biomass production, which enables the rapid CO2 rise at glacial terminations, and enhanced glacial carbonate weathering through the exposure of continental shelves, which enables CO2 to passively follow the subsequent glacial cooling cycle. Milanković variations provide for modulations of the amplitude and periods of the resulting signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archer D., Kheshgi H., Maier-Reimer E.: Multiple timescales for neutralization of fossil fuel CO2. Geophys. Res. Lett. 24, 405–408 (1997)

    Article  Google Scholar 

  • Berger W.H.: Increase of carbon dioxide in the atmosphere during deglaciation: the coral reef hypothesis. Naturwissenschaften 69, 87–88 (1982)

    Article  Google Scholar 

  • Berger A.: Milankovitch theory and climate. Revs. Geophys. 26, 624–657 (1988)

    Article  Google Scholar 

  • Bigg, G.: The Oceans and Climate, 2nd edn. CUP, Cambridge (2003)

  • Boulton G.S., Hagdorn M., Maillot P.B., Zatsepin S.: Drainage beneath ice sheets: groundwater–channel coupling, and the origin of esker systems from former ice sheets. Quat. Sci. Rev. 28, 621–638 (2009)

    Article  Google Scholar 

  • Broecker W.S., Peng T.-H.: Tracers in the Sea. Eldigio Press, New York (1982)

    Google Scholar 

  • Budyko M.I.: The effect of solar radiation variations on the climate of the Earth. Tellus 21, 611–619 (1969)

    Article  Google Scholar 

  • Caldeira K.: Enhanced Cenozoic chemical weathering and the subduction of pelagic carbonate. Nature 357, 578–581 (1992)

    Article  Google Scholar 

  • Cheng H., Edwards R.L., Broecker W.S., Denton G.H., Kong X., Wang Y., Zhang R., Wang X.: Ice age terminations. Science 326, 248–252 (2009)

    Article  Google Scholar 

  • Croll J.: On the physical cause of the change of climate during geological epochs. Phil. Mag. 28(4), 121–137 (1864)

    Google Scholar 

  • Croll J.: Climate and Time in Their Geological Relations: A Theory of Secular Changes of the Earth’s Climate. Daldy, Isbister, London (1875)

    Google Scholar 

  • Cuffey K., Paterson W.S.B.: The Physics of Glaciers. 4th edn. Butterworth-Heinemann, Oxford (2010)

    Google Scholar 

  • Emerson S.R., Hedges J.I.: Chemical Oceanography and the Marine Carbon Cycle. CUP, Cambridge (2008)

    Book  Google Scholar 

  • Evatt G., Fowler A.C., Clark C.D., Hulton N.: Subglacial floods beneath ice sheets. Phil. Trans. R. Soc. 364, 1769–1794 (2006)

    Article  MathSciNet  Google Scholar 

  • Foster G.L., Vance D.: Negligible glacial-interglacial variation in continental weathering rates. Nature 444, 918–921 (2006)

    Article  Google Scholar 

  • Fowler A.C.: Mathematical Geoscience. Springer, London (2011)

    Book  MATH  Google Scholar 

  • Ganopolski A., Rahmstorf S.: Rapid changes of glacial climate simulated in a coupled climate model. Nature 409, 153–158 (2001)

    Article  Google Scholar 

  • Ghil M., Le Treut H.: A climate model with cryodynamics and geodynamics. J. Geophys. Res. 86, 5262–5270 (1981)

    Article  Google Scholar 

  • Goldbeter A.: Biochemical Oscillations and Cellular Rhythms. CUP, Cambridge (1996)

    Book  MATH  Google Scholar 

  • Hays J.D., Imbrie J., Shackleton N.J.: Variations in the Earth’s orbit: pacemaker of the ice ages. Science 194, 1121–1132 (1976)

    Article  Google Scholar 

  • Hodson A.: Phosphorus in glacial meltwaters. In: Knight, P.G. (ed.) Glacier Science and Environmental Change, pp. 81–82. Blackwell, Oxford (2006)

    Chapter  Google Scholar 

  • Houghton J.T.: Global Warming: The Complete Briefing. 4th edn. CUP, Cambridge (2009)

    Book  Google Scholar 

  • Huybers P.: Early Pleistocene glacial cycles and the integrated summer insolation forcing. Science 313, 508–511 (2006)

    Article  Google Scholar 

  • Jahnke R.A.: The phosphorus cycle. In: Butcher, S.S., Charlson, R.J., Orians, G.H., Wolfe, G.V. (eds) Global Biogeochemical Cycles, pp. 301–315. Academic Press, London (1992)

    Chapter  Google Scholar 

  • Källén E., Crafoord C., Ghil M.: Free oscillations in a climate model with ice-sheet dynamics. J. Atmos. Sci. 36, 2292–2303 (1979)

    Article  Google Scholar 

  • Kawamura K., Parrenin F., Lisiecki L., Uemura R., Vimeux F., Severinghaus J.P., Hutterli M.A., Nakazawa T., Aoki S., Jouzel J., Raymo M.E., Matsumoto K., Nakata , Motoyama H., Fujita S., Goto-Azuma K., Fujii Y., Watanabe O.: Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years. Nature 448, 912–916 (2007)

    Article  Google Scholar 

  • Krauskopf K.B., Bird D.K.: Introduction to Geochemistry. 3rd edn. McGraw-Hill, New York (1995)

    Google Scholar 

  • Laskar J., Robutel P., Joutel F., Gastineau M., Correia A.C.M., Levrard B.: A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004)

    Article  Google Scholar 

  • Le Treut H., Ghil M.: Orbital forcing, climatic interactions, and glaciation cycles. J. Geophys. Res. 88, 5167–5190 (1983)

    Article  Google Scholar 

  • Leverington D.W., Mann J.D., Teller J.T.: Changes in the bathymetry and volume of Glacial Lake Agassiz between 11,000 and 9,300 14C yr b.p. Quat. Res. 54, 174–181 (2000)

    Article  Google Scholar 

  • Lisiecki L.E., Raymo M.E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18 O records. Paleoceanography 20, PA1003 (2005). doi:10.1029/2004PA001071

    Google Scholar 

  • Maasch K.A., Saltzman B.: A low-order dynamical model of global climatic variability over the full Pleistocene. J. Geophys. Res. 95, 1955–1963 (1990)

    Article  Google Scholar 

  • MacAyeal D.R.: A catastrophe model of the paleoclimate. J. Glaciol. 24, 245–257 (1979)

    Google Scholar 

  • Mackenzie F.T., Lerman A., Andersson A.J.: Past and present of sediment and carbon biogeochemical cycling models. Biogeosciences 1, 11–32 (2004)

    Article  Google Scholar 

  • Milanković, M.: Canon of insolation and the ice-age problem. Translated from German edition of 1941. Agency for Textbooks, Belgrade (1998)

  • Munhoven G.: Glacial-interglacial changes of continental weathering: estimates of the related CO2 and HCO3 flux variations and their uncertainties. Glob. Planet. Change 33, 155–176 (2002)

    Article  Google Scholar 

  • Murton J.B., Bateman M.D., Dallimore S.R., Teller J.T., Yang Z.: Identification of Younger Dryas outburst flood path from Lake Agassiz to the Arctic Ocean. Nature 464, 740–743 (2010)

    Article  Google Scholar 

  • Oerlemans J.: Model experiments on the 100,000-yr glacial cycle. Nature 287, 430–432 (1980)

    Article  Google Scholar 

  • Oerlemans J.: Some basic experiments with a vertically-integrated ice sheet model. Tellus 33, 1–11 (1981)

    Article  Google Scholar 

  • Pagani M., Huber M., Liu Z., Bohaty S.M., Henderiks J., Sijp W., Krishnan S., DeConto R.M.: The role of carbon dioxide during the onset of Antarctic glaciation. Science 334, 1261–1264 (2011)

    Article  Google Scholar 

  • Petit J.R., Jouzel J., Raynaud D., Barkov N.I., Barnola J.-M., Basile I., Bender M., Chappellaz J., Davis M., Delaygue G., Delmotte M., Kotlyakov V.M., Legrand M., Lipenkov V.Y., Lorius C., Pépin L., Ritz C., Saltzman E., Stievenard M.: Climate and atmospheric history of the past 420,000 years from the Vostok ice core. Antarctica. Nat. 399, 429–436 (1999)

    Google Scholar 

  • Parrenin F., Paillard D.: Amplitude and phase of glacial cycles from a conceptual model. Earth Planet. Sci. Lett. 214, 243–250 (2003)

    Article  Google Scholar 

  • Pollard D.: A simple ice sheet model yields realistic 100 kyr glacial cycles. Nature 296, 334–338 (1982)

    Article  Google Scholar 

  • Pollard D., DeConto R.M.: Hysteresis in Cenozoic Antarctic ice-sheet variations. Global Planet. Change 45, 9–21 (2005)

    Article  Google Scholar 

  • Raymo M.E., Lisiecki L.E., Nisancioglu K.H.: Plio-Pleistocene ice volume, Antarctic climate, and the global δ 18O record. Science 313, 492–495 (2006)

    Article  Google Scholar 

  • Ridgwell A.J., Kennedy M.J., Caldeira K.: Carbonate deposition, climate stability, and Neoproterozoic ice ages. Science 302, 859–862 (2003)

    Article  Google Scholar 

  • Ridgwell A., Zeebe R.E.: The role of the global carbonate cycle in the regulation and evolution of the Earth system. Earth Planet. Sci. Lett. 234, 299–315 (2005)

    Article  Google Scholar 

  • Saltzman B.: Dynamical Paleoclimatology: Generalized Theory of Global Climate Change. Academic Press, San Diego (2002)

    Google Scholar 

  • Saltzman B., Maasch K.A.: Carbon cycle instability as a cause of the late Pleistocene ice age oscillations: modeling the asymmetric response. Global Biogeochem. Cycles 2, 177–185 (1988)

    Article  Google Scholar 

  • Saltzman B., Maasch K.A.: A first-order global model of late Cenozoic climatic change. II. Further analysis based on a simplification of CO2 dynamics. Clim. Dyn. 5, 201–210 (1991)

    Google Scholar 

  • Saltzman B., Hansen A.R., Maasch K.A.: The late Quaternary glaciations as the response of a three-component feedback system to Earth–orbital forcing. J. Atmos. Sci. 41, 3380–3389 (1984)

    Article  Google Scholar 

  • Sellers W.D.: A climate model based on the energy balance of the earth-atmosphere system. J. Appl. Meteorol. 8, 392–400 (1969)

    Article  Google Scholar 

  • Shakun J.D., Clark P.U., He F., Marcott S.A., Mix A.C., Liu Z., Otto-Bliesner B., Schmittner A., Bard E.: Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484, 49–55 (2012)

    Article  Google Scholar 

  • Shreve R.L.: Esker characteristics in terms of glacier physics, Katahdin esker system. Maine. Geol. Soc. Amer. Bull. 96, 639–646 (1985)

    Article  Google Scholar 

  • Siddall M., Rohling E.J., Almogi-Labin A., Hemleben Ch., Melschner D., Schmelzer I., Smeed D.A.: Sea-level fluctuations during the last glacial cycle. Nature 423, 853–858 (2003)

    Article  Google Scholar 

  • Toggweiler J.R.: Origin of the 100,000-year timescale in Antarctic temperatures and atmospheric CO2. Paleoceanogr. 23, PA2211 (2008). doi:10.1029/2006PA001405

    Google Scholar 

  • Tranter M.: Glacial chemical weathering, runoff composition and solute fluxes. In: Knight, P.G. (ed.) Glacier Science and Environmental Change, pp. 71–75. Blackwell, Oxford (2006)

    Chapter  Google Scholar 

  • Tziperman E., Raymo M.E., Huybers P., Wunsch C.: Consequences of pacing the Pleistocene 100 kyr ice ages by nonlinear phase locking to Milanković forcing. Paleoceanogr. 21, PA4206 (2006). doi:10.1029/2005PA001241

    Google Scholar 

  • Walker J.C.G., Hays P.B., Kasting J.F.: A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J. Geophys. Res. 86(C10), 9776–9782 (1981)

    Article  Google Scholar 

  • Weertman J.: Milanković solar radiation variations and ice age ice sheet sizes. Nature 261, 17–20 (1976)

    Article  Google Scholar 

  • Wingham D.J., Siegert M.J., Shepherd A., Muir A.S.: Rapid discharge connects Antarctic subglacial lakes. Nature 440, 1033–1037 (2006)

    Article  Google Scholar 

  • Wolff E.W., Fischer H., Röthlisberger R.: Glacial terminations as southern warmings without northern control. Nat. Geosci. 2, 206–209 (2009)

    Article  Google Scholar 

  • Zeebe R.E., Westbroek P.: A simple model for the CaCO3 saturation state of the ocean: the “Strangelove”, the “Neritan”, and the “Cretan” ocea. Geochem. Geophys. Geosyst. 4, 1104 (2003). doi:10.1029/2003GC000538

    Google Scholar 

  • Zeebe R.E., Wolf-Gladrow D.: CO2 in Seawater: Equilibrium, Kinetics, Isotopes. Elsevier, Amsterdam (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Fowler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fowler, A.C., Rickaby, R.E.M. & Wolff, E.W. Exploration of a simple model for ice ages. Int J Geomath 4, 227–297 (2013). https://doi.org/10.1007/s13137-012-0040-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13137-012-0040-7

Keywords

Mathematics Subject Classification

Navigation