Skip to main content
Log in

The El Niño-Southern Oscillation cycle simulated by the climate system model of Chinese Academy of Sciences

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

On the basis of more than 200-year control run, the performance of the climate system model of Chinese Academy of Sciences (CAS-ESM-C) in simulating the El Niño-Southern Oscillation (ENSO) cycle is evaluated, including the onset, development and decay of the ENSO. It is shown that, the model can reasonably simulate the annual cycle and interannual variability of sea surface temperature (SST) in the tropical Pacific, as well as the seasonal phase-locking of the ENSO. The model also captures two prerequisites for the El Niño onset, i.e., a westerly anomaly and a warm SST anomaly in the equatorial western Pacific. Owing to too strong forcing from an extratropical meridional wind, however, the westerly anomaly in this region is largely overestimated. Moreover, the simulated thermocline is much shallower with a weaker slope. As a result, the warm SST anomaly from the western Pacific propagates eastward more quickly, leading to a faster development of an El Niño. During the decay stage, owing to a stronger El Niño in the model, the secondary Gill-type response of the tropical atmosphere to the eastern Pacific warming is much stronger, thereby resulting in a persistent easterly anomaly in the western Pacific. Meanwhile, a cold anomaly in the warm pool appears as a result of a lifted thermocline via Ekman pumping. Finally, an El Niño decays into a La Niña through their interactions. In addition, the shorter period and larger amplitude of the ENSO in the model can be attributed to a shallower thermocline in the equatorial Pacific, which speeds up the zonal redistribution of a heat content in the upper ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • AchutaRao K, Sperber K R. 2006. ENSO simulation in coupled ocean atmosphere models: are the current models better? Climate Dyn, 27(1): 1–15

    Article  Google Scholar 

  • An S I, Jin F F. 2004. Nonlinearity and asymmetry of ENSO. J Climate, 17(12): 2399–2412

    Article  Google Scholar 

  • Bellenger H, Guilyardi E, Leloup J, et al. 2014. ENSO representation in climate models: from CMIP3 to CMIP5. Climate Dyn, 42(7–8): 1999–2018

    Article  Google Scholar 

  • Bjerknes J. 1969. Atmospheric teleconnections from the equatorial Pacific. Mon Wea Rev, 97(3): 163–172

    Article  Google Scholar 

  • Briegleb B P, Bitz C M, Hunke E C, et al. 2004. Scientific description of the sea ice component in the community climate system model, version three. NCAR Technical Note NCAR/TN-463+STR, Colorado: National Center for Atmospheric Research, doi: 10.5065/D6HH6H1P.

    Google Scholar 

  • Carton J A, Chepurin G, Cao X, et al. 2000. A simple ocean data assimilation analysis of the global upper ocean 1950–1995, Part 1: methodology. J Phys Oceanogr, 30(2): 294–309

    Article  Google Scholar 

  • Dickinson R E, Oleson K W, Bonan G, et al. 2006. The community land model and its climate statistics as a component of the community climate system model. J Climate, 19(11): 2302–2324

    Article  Google Scholar 

  • Fedorov A V, Philander S G. 2001. A stability analysis of tropical ocean-atmosphere interactions: Bridging measurements and theory for El Niño. J Climate, 14(14): 3086–3101

    Article  Google Scholar 

  • Guilyardi E. 2006. El Niño-mean state-seasonal cycle interactions in a multi-model ensemble. Climate Dyn, 26(4): 329–348

    Article  Google Scholar 

  • Guilyardi E, Wittenberg A, Fedorov A, et al. 2009. Understanding El Niño in ocean-atmosphere general circulation models: progress and challenges. Bull Amer Meteor Soc, 90(3): 325–340

    Article  Google Scholar 

  • Ingleby B, Huddleston M. 2007. Quality control of ocean temperature and salinity profiles-Historical and real-time data. J Marine Syst, 65(1–4): 158–175

    Article  Google Scholar 

  • Jin F F. 1997. An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J Atmos Sci, 54(7): 811–829

    Article  Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woollen J, et al. 2002. NCEP-DOE AMIP-II reanalysis (R-2). Bull Amer Meteor Soc, 83(11): 1631–1643

    Article  Google Scholar 

  • Larkin N K, Harrison D E. 2002. ENSO warm (El Niño) and cold (La Niña) event life cycles: Ocean surface anomaly patterns, their symmetries, asymmetries, and implications. J Climate, 15(10): 1118–1140

    Article  Google Scholar 

  • Latif M, Sperber K, Arblaster J, et al. 2001. ENSIP: the El Niño simulation intercomparison project. Climate Dyn, 18(3–4): 255–276

    Article  Google Scholar 

  • Leloup J, Lengaigne M, Boulanger J P. 2008. Twentieth century ENSO characteristics in the IPCC database. Climate Dyn, 30(2–3): 277–291

    Article  Google Scholar 

  • Li Chongyin, Mu Mingquan. 1999. El Niño occurrence and sub-surface ocean temperature anomalies in the Pacific warm pool. Chinese Journal of Atmospheric Sciences (in Chinese), 23(5): 513–521

    Google Scholar 

  • Liebmann B, Smith C A. 1996. Description of a complete (interpolated) outgoing longwave radiation dataset. Bull Amer Meteor Soc, 77: 1275–1277

    Google Scholar 

  • Liu Changzheng, Xue Feng. 2008. The persistent maintenance of the strong westerly anomalies over the equatorial western Pacific during the onset and development of ENSO. Climatic and Environmental Research (in Chinese), 13(2): 161–170

    Google Scholar 

  • Liu Changzheng, Xue Feng. 2010a. The decay of El Niño with different intensity. Part I, The decay of the strong El Niño. Chinese Journal of Geophysics, 53(1): 14–25

    Article  Google Scholar 

  • Liu Changzheng, Xue Feng. 2010b. The decay of El Niño with different intensity. Part II, The decay of the moderate and relatively-weak El Niño. Chinese Journal of Geophysics, 53(6): 915–925

    Article  Google Scholar 

  • Liu Changzheng, Xue Feng. 2012. The abortion of El Niño event in 1993 and its comparison with the typical El Niño event. Climatic and Environmental Research (in Chinese), 17(2): 197–204

    Google Scholar 

  • Liu Hailong, Yu Yongqiang, Li Wei, et al. 2004. Manual for LASG/IAP Climate System Ocean Model (LICOM1.0) (in Chinese). Beijing: Science Press, 107

    Google Scholar 

  • Philander S G H. 1983. El Niño and Southern Oscillation phenomena. Nature, 302(5906): 295–301

    Article  Google Scholar 

  • Philander S G H. 1985. El Niño and La Niña. J Atmos Sci, 42(23): 2652–2662

    Article  Google Scholar 

  • Philander S G H, Fedorov A. 2003. Is El Nino sporadic or cyclic? Annu Rev Earth Planet Sci, 31: 579–594

    Article  Google Scholar 

  • Picaut J, Masia F, du Penhoat Y. 1997. An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science, 277(5326): 663–666

    Article  Google Scholar 

  • Rasmusson E M, Carpenter T H. 1982. Variations in tropical sea surface temperature and surface wind fields associated with the southern oscillation/El Niño. Mon Wea Rev, 110(5): 354–384

    Article  Google Scholar 

  • Rayner N A, Parker D E, Horton E B, et al. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res, 108(D14): doi: 10.1029/2002JD002670

    Google Scholar 

  • Suarez M J, Schopf P S. 1988. A delayed action oscillator for ENSO. J Atmos Sci, 45(21): 3283–3287

    Article  Google Scholar 

  • Sun Hongchuan, Zhou Guangqing, Zeng Qingcun. 2012. Assessments of the climate system model (CAS-ESM-C) using IAP AGCM4 as its atmospheric component. Chinese Journal of Atmospheric Sciences (in Chinese), 36(2): 215–233

    Google Scholar 

  • Trenberth K E. 1997. The Definition of El Niño. Bull Amer Meteor Soc, 78(12): 2771–2777

    Article  Google Scholar 

  • Weisberg R H, Wang Chunzai. 1997. A western Pacific oscillator paradigm for the El Niño-Southern Oscillation. Geophys Res Lett, 24(7): 779–782

    Article  Google Scholar 

  • Wu Bo, Li Tim, Zhou Tianjun. 2010. Asymmetry of atmospheric circulation anomalies over the western north Pacific between El Niño and La Niña. J Climate, 23(18): 4807–4822

    Article  Google Scholar 

  • Wyrtki K. 1975. El Niño-The dynamic response of the Equatorial Pacific Ocean to atmospheric forcing. J Phys Oceanogr, 5(4): 572–584

    Article  Google Scholar 

  • Xue Feng, He Juanxiong. 2007. The influence of the extratropical atmospheric disturbances on ENSO. Chinese Journal of Geophysics, 50(5): 1130–1138

    Article  Google Scholar 

  • Xue Feng, Liu Changzheng. 2008. The influence of moderate ENSO on summer rainfall in eastern China and its comparison with strong ENSO. Chinese Science Bulletin, 53(5): 791–800

    Article  Google Scholar 

  • Yu J Y, Kim S T. 2010. Identification of central-Pacific and eastern-Pacific types of ENSO in CMIP3 models. Geophys Res Lett, L15705, doi: 10.1029/2010GL044082

    Google Scholar 

  • Zebiak S E, Cane M A. 1987. A model El Niño-Southern Oscillation. Mon Wea Rev, 115(10): 2262–2278

    Article  Google Scholar 

  • Zhang He. 2009. Development of IAP atmospheric general circulation model version 4.0 and its climate simulations [dissertation]. Beijing: University of Chinese Academy of Sciences, 194

    Google Scholar 

  • Zhou Guangqing, Li Chongyin. 1999. Simulation on the relation between the subsurface temperature anomaly in western Pacific and ENSO by using CGCM. Climatic and Environmental Research (in Chinese), 4(4): 346–352

    Google Scholar 

  • Zhou Guangqing, Zeng Qingcun, Zhang Ronghua. 1999. An improved air-sea coupled model and its numerical simulation. Progress in Natural Science (in Chinese), 9(6): 542–551

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Xue.

Additional information

Foundation item: The Strategic Priority Research Program of Chinese Academy of Sciences under contract No. XDA05110201; the National Basic Research Program (973 Program) of China under contract No. 2010CB951901.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, T., Xue, F., Sun, H. et al. The El Niño-Southern Oscillation cycle simulated by the climate system model of Chinese Academy of Sciences. Acta Oceanol. Sin. 34, 55–65 (2015). https://doi.org/10.1007/s13131-015-0596-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-015-0596-9

Key words

Navigation