Skip to main content
Log in

Endemic diversification in the mountains: genetic, morphological, and geographical differentiation of the Hemidactylus geckos in southwestern Arabia

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

In this study, we provide genetic, morphological, and geographical comparisons for 11 species of the southwestern Arabian radiation of Hemidactylus geckos, nine of which are endemic to the region. By using a coalescence-based species-tree reconstruction in combination with divergence time estimations and speciation probability testing, we show that most of the speciation events occurred in the Pliocene, which is more recent than previously thought based on calibrations of concatenated data sets. The current dating indicates that the changing climate at the beginning of the Pliocene, from hot and dry to cold and wet, is likely responsible for increased speciation in Hemidactylus. Analyses of geographic and altitudinal overlap of the species and their morphological differentiation show that most species do not occur in sympatry. Those that overlap geographically are usually differentiated by their altitudinal preference, head shape, body size, or their combination. Our results indicate that the topographically complex mountains of southwestern Arabia support a significant radiation of Hemidactylus geckos by allowing multiple allopatric speciation events to occur in a relatively small area. Consequently, we describe two new species endemic to the Asir Mountains of Saudi Arabia, H. alfarraji sp. n. and H. asirensis sp. n., and elevate two former subspecies of H. yerburii to a species level, H. montanus and H. pauciporosus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arnold, E. N. (1980). The reptiles and amphibians of Dhofar, southern Arabia. Journal of Oman Studies, Special Report, 2, 273–332.

    Google Scholar 

  • Arnold, E. N. (1986). A key and annotated check-list to the lizards and amphisbaenians of Arabia. Fauna of Saudi Arabia, 8, 385–435.

    Google Scholar 

  • Arnold, E. N. (1987). Zoogeography of the reptiles and amphibians of Arabia. In F. Krupp, W. Schneider, & R. Kinzelbach (Eds.), Proceedings of the Symposium on the fauna and zoogeography of the Middle East (pp. 245–256). Wiesbaden: Ludwig Reichert.

    Google Scholar 

  • Baele, G., Lemey, P., Bedford, T., Rambaut, A., Suchard, M. A., & Alekseyenko, A. V. (2012). Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Molecular Biology and Evolution, 29(9), 2157–2167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baele, G., Li, W. L. S., Drummond, A. J., Suchard, M. A., & Lemey, P. (2013). Accurate model selection of relaxed molecular clocks in Bayesian phylogenetics. Molecular Biology and Evolution, 30(2), 239–243.

    Article  CAS  PubMed  Google Scholar 

  • Bohannon, R. G., Naeser, C. W., Schmidt, D. L., & Zimmermann, R. A. (1989). The timing of uplift, volcanism, and rifting peripheral to the Red Sea: a case for passive rifting? Journal of Geophysical Research, 94(B2), 1683–1701.

    Article  Google Scholar 

  • Böhme, M., & Ilg, A. (2003). FosFARbase. http://www.wahre-staerke.com/. Accessed April 18, 2016.

    Google Scholar 

  • Bosworth, W., Huchon, P., & McClay, K. (2005). The Red Sea and Gulf of Aden Basins. Journal of African Earth Sciences, 43(1–3), 334–378.

    Article  Google Scholar 

  • Brown, W. L., & Wilson, E. O. (1956). Character displacement. Systematic Zoology, 5(2), 49–64.

    Article  Google Scholar 

  • Burbrink, F. T., & Guiher, T. J. (2015). Considering gene flow when using coalescent methods to delimit lineages of North American pitvipers of the genus Agkistrodon. Zoological Journal of the Linnean Society, 173(2), 505–526.

    Article  Google Scholar 

  • Busais, S., & Joger, U. (2011a). Molecular phylogeny of the gecko genus Hemidactylus Oken, 1817 on the mainland of Yemen (Reptilia: Gekkonidae). Zoology in the Middle East, 53, 25–34.

    Article  Google Scholar 

  • Busais, S., & Joger, U. (2011b). Three new species of Hemidactylus Oken, 1817 from Yemen (Squamata, Gekkonidae). Vertebrate Zoology, 61(2), 267–280.

    Google Scholar 

  • Camargo, A., Morando, M., Avila, L. J., & Sites, J. W. (2012). Species delimitation with ABC and other coalescent-based methods: a test of accuracy with simulations and an empirical example with lizards of the Liolaemus darwinii complex (Squamata: Liolaemidae). Evolution, 66(9), 2834–2849.

    Article  PubMed  Google Scholar 

  • Carranza, S., & Arnold, E. N. (2006). Systematics, biogeography and evolution of Hemidactylus geckos (Reptilia: Gekkonidae) elucidated using mitochondrial DNA sequences. Molecular Phylogenetics and Evolution, 38, 531–545.

    Article  CAS  PubMed  Google Scholar 

  • Carranza, S., & Arnold, E. N. (2012). A review of the geckos of the genus Hemidactylus (Squamata: Gekkonidae) from Oman based on morphology, mitochondrial and nuclear data, with descriptions of eight new species. Zootaxa, 3378, 1–95.

    Google Scholar 

  • Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution, 17(4), 540–552.

    Article  CAS  PubMed  Google Scholar 

  • Clement, M., Posada, D., & Crandall, K. A. (2000). TCS: A computer program to estimate gene genealogies. Molecular Ecology, 9(10), 1657–1659.

    Article  CAS  PubMed  Google Scholar 

  • Cox, N., Mallon, D., Bowles, P., Els, J., & Tognelli, M. (2012). The conservation status and distribution of reptiles of the Arabian Peninsula. by: IUCN, Gland, Switzerland and Cambridge, UK and the Environment and Protected Areas Authority.

  • Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). JModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9(8), 772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davison, I., Al-Kadasi, M., Al-Khirbash, S., Al-Subbary, A. K., Baker, J., Blakey, S., et al. (1994). Geological evolution of the southeastern Red Sea Rift margin, Republic of Yemen. Geological Society of America Bulletin, 106(11), 1474–1493.

    Article  Google Scholar 

  • de Pous, P., Machado, L., Metallinou, M., Červenka, J., Kratochvíl, L., Paschou, N., et al. (2016). Taxonomy and biogeography of Bunopus spatalurus (Reptilia; Gekkonidae) from the Arabian Peninsula. Journal of Zoological Systematics and Evolutionary Research, 54(1), 67–81.

    Article  Google Scholar 

  • Degnan, J. H., & Rosenberg, N. A. (2009). Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends in Ecology & Evolution, 24(6), 332–340.

    Article  Google Scholar 

  • dos Santos, A. M., Cabezas, M. P., Tavares, A. I., Xavier, R., Branco, M. (2015). tcsBU: a tool to extend TCS network layout and visualization. Bioinformatics 32(4), 627–628. doi:10.1093/bioinformatics/btv636.

  • Drummond, A. J., & Bouckaert, R. R. (2015). Bayesian evolutionary analysis with BEAST. New York: Cambridge University Press.

  • Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29(8), 1969–1973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgell, H. S. (2006). Arabian deserts: nature, origin and evolution. Dordrecht: Springer.

    Book  Google Scholar 

  • Edwards, S., & Beerli, P. (2000). Perspective: gene divergence, population divergence, and the variance in coalescence time in phylogeographic studies. Evolution, 54(6), 1839–1854.

    CAS  PubMed  Google Scholar 

  • Estes, R. (1983). Handbuch der Paläoherpetologie; Part 10A: Sauria terrestria, Amphisbaenia. Stuttgart, New York: Gustav Fischer Verlag.

    Google Scholar 

  • Fjeldså, J., & Rahbek, C. (2006). Diversification of tanagers, a species rich bird group, from lowlands to montane regions of South America. Integrative and Comparative Biology, 46(1), 72–81.

    Article  PubMed  Google Scholar 

  • Fjeldså, J., Bowie, R. C., & Rahbek, C. (2012). The role of mountain ranges in the diversification of birds. Annual Review of Ecology, Evolution, and Systematics, 43, 249–265.

    Article  Google Scholar 

  • Flot, J. F. (2010). Seqphase: a web tool for interconverting phase input/output files and fasta sequence alignments. Molecular Ecology Resources, 10(1), 162–166.

    Article  CAS  PubMed  Google Scholar 

  • Frontier, S. (1976). Étude de la décroissance des valeurs propres dans une analyse en composantes principales: Comparaison avec le modd́le du bâton brisé. Journal of Experimental Marine Biology and Ecology, 25(1), 67–75.

    Article  Google Scholar 

  • Garcia-Porta, J., Šmíd, J., Sol, D., Fasola, M., & Carranza, S. (2016). Testing the island effect on phenotypic diversification: insights from the Hemidactylus geckos of the Socotra Archipelago. Scientific Reports, 6, 23729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasperetti, J. (1988). Snakes of Arabia. Fauna of Saudi Arabia, 9, 169–450.

    Google Scholar 

  • Gómez-Díaz, E., Sindaco, R., Pupin, F., Fasola, M., & Carranza, S. (2012). Origin and in situ diversification in Hemidactylus geckos of the Socotra Archipelago. Molecular Ecology, 21(16), 4074–4092.

    Article  PubMed  Google Scholar 

  • Grummer, J. A., Bryson, R. W., & Reeder, T. W. (2014). Species delimitation using Bayes factors: simulations and application to the Sceloporus scalaris species group (Squamata: Phrynosomatidae). Systematic Biology, 63(2), 119–133.

    Article  PubMed  Google Scholar 

  • Heled, J., & Drummond, A. J. (2010). Bayesian inference of species trees from multilocus data. Molecular Biology and Evolution, 27(3), 570–580.

    Article  CAS  PubMed  Google Scholar 

  • Herrel, A., Damme, R. V., Vanhooydonck, B., & Vree, F. D. (2001). The implications of bite performance for diet in two species of lacertid lizards. Canadian Journal of Zoology, 79(4), 662–670.

    Article  Google Scholar 

  • Hovmöller, R., Knowles, L. L., & Kubatko, L. S. (2013). Effects of missing data on species tree estimation under the coalescent. Molecular Phylogenetics and Evolution, 69(3), 1057–1062.

    Article  PubMed  Google Scholar 

  • Huang, Y., Clemens, S. C., Liu, W., Wang, Y., & Prell, W. L. (2007). Large-scale hydrological change drove the late Miocene C4 plant expansion in the Himalayan foreland and Arabian Peninsula. Geology, 35(6), 531–534.

    Article  CAS  Google Scholar 

  • Joly, S., Stevens, M. I., & van Vuuren, B. J. (2007). Haplotype networks can be misleading in the presence of missing data. Systematic Biology, 56(5), 857–862.

    Article  PubMed  Google Scholar 

  • Kapli, P., Lymberakis, P., Crochet, P. A., Geniez, P., Brito, J. C., Almutairi, M., et al. (2014). Historical biogeography of the lacertid lizard Mesalina in North Africa and the Middle East. Journal of Biogeography, 42(2), 267–279.

    Article  Google Scholar 

  • Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90(430), 773–795.

    Article  Google Scholar 

  • Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30(4), 772–780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohler, T., & Maselli, D. (2012). Mountains and climate change. From understanding to action. Bern: FAO/CDE/SDC.

    Google Scholar 

  • Kubatko, L. S., & Degnan, J. H. (2007). Inconsistency of phylogenetic estimates from concatenated data under coalescence. Systematic Biology, 56(1), 17–24.

    Article  CAS  PubMed  Google Scholar 

  • Lambert, S. M., Reeder, T. W., & Wiens, J. J. (2015). When do species-tree and concatenated estimates disagree? An empirical analysis with higher-level scincid lizard phylogeny. Molecular Phylogenetics and Evolution, 82, 146–155.

    Article  PubMed  Google Scholar 

  • Lanfear, R., Calcott, B., Ho, S. Y. W., & Guindon, S. (2012). PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29(6), 1695–1701.

    Article  CAS  PubMed  Google Scholar 

  • Leaché, A. D., & Fujita, M. K. (2010). Bayesian species delimitation in West African forest geckos (Hemidactylus fasciatus). Proceedings of the Royal Society B: Biological Sciences, 282(1819), 1–7.

    Google Scholar 

  • Losos, J. B. (2009). Lizards in an evolutionary tree: ecology and adaptive radiation of anoles. Berkeley: University of California Press.

  • Martin, D. P., Lemey, P., Lott, M., Moulton, V., Posada, D., & Lefeuvre, P. (2010). RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics, 26(19), 2462–2463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCormack, J. E., Huang, H., Knowles, L. L., Gillespie, R., & Clague, D. (2009). Sky islands. Encyclopedia of Islands, 4, 841–843.

    Google Scholar 

  • McCormack, J. E., Heled, J., Delaney, K. S., Peterson, A. T., & Knowles, L. L. (2011). Calibrating divergence times on species trees versus gene trees: implications for speciation history of Aphelocoma jays. Evolution, 65(1), 184–202.

    Article  PubMed  Google Scholar 

  • Metallinou, M., Arnold, E. N., Crochet, P.-A., Geniez, P., Brito, J. C., Lymberakis, P., et al. (2012). Conquering the Sahara and Arabian deserts: systematics and biogeography of Stenodactylus geckos (Reptilia: Gekkonidae). BMC Evolutionary Biology, 12(258), 1–17.

    Google Scholar 

  • Metallinou, M., Červenka, J., Crochet, P.-A., Kratochvíl, L., Wilms, T., Geniez, P., et al. (2015). Species on the rocks: systematics and biogeography of the rock-dwelling Ptyodactylus geckos (Squamata: Phyllodactylidae) in North Africa and Arabia. Molecular Phylogenetics and Evolution, 85, 208–220.

    Article  PubMed  Google Scholar 

  • Metzger, K. A., & Herrel, A. (2005). Correlations between lizard cranial shape and diet: a quantitative, phylogenetically informed analysis. Biological Journal of the Linnean Society, 86(4), 433–466.

    Article  Google Scholar 

  • Miller, M., Pfeiffer, W., & Schwartz, T (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE), (pp. 1–8). New Orleans.

  • Mittermeier, R. A., Gil, P. R., Hoffmann, M., Pilgrim, J., Brooks, T., Mittermeier, C. G., et al. (2004). Hotspots Revisited: Earth’s Biologically Richest and Most Endangered Terrestrial Ecoregions. Washington: Conservation International.

  • Moravec, J., Kratochvíl, L., Amr, Z. S., Jandzik, D., Šmíd, J., & Gvoždík, V. (2011). High genetic differentiation within the Hemidactylus turcicus complex (Reptilia: Gekkonidae) in the Levant, with comments on the phylogeny and systematics of the genus. Zootaxa, 2894, 21–38.

    Google Scholar 

  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853–858.

    Article  CAS  PubMed  Google Scholar 

  • Pepper, M., Fujita, M. K., Moritz, C., & Keogh, J. S. (2011). Palaeoclimate change drove diversification among isolated mountain refugia in the Australian arid zone. Molecular Ecology, 20(7), 1529–1545.

    Article  PubMed  Google Scholar 

  • Pianka, E. R. (1969). Sympatry of desert lizards (Ctenotus) in Western Australia. Ecology, 50, 1012–1030.

    Article  Google Scholar 

  • Pianka, E. R. (1986). Ecology and natural history of desert lizards: analyses of the ecological niche and community structure. New Jersey: Princeton University Press.

    Google Scholar 

  • Popp, M., Gizaw, A., Nemomissa, S., Suda, J., & Brochmann, C. (2008). Colonization and diversification in the African ‘sky islands’ by Eurasian Lychnis L. (Caryophyllaceae). Journal of Biogeography, 35(6), 1016–1029.

    Article  Google Scholar 

  • Rambaut, A., & Drummond, A. (2007). Tracer v1.4. Available from: http://beast.bio.ed.ac.uk/Tracer.

  • Rannala, B., & Yang, Z. (2003). Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. Genetics, 164(4), 1645–1656.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silvestro, D., & Michalak, I. (2012). RaxmlGUI: a graphical front-end for RAxML. Organisms Diversity and Evolution, 12(4), 335–337.

    Article  Google Scholar 

  • Sindaco, R., & Jeremčenko, V. K. (2008). The reptiles of the Western Palearctic. 1. Annotated checklist and distributional atlas of the turtles, crocodiles, amphisbaenians and lizards of Europe, North Africa, Middle East and Central Asia. Latina (Italy): Monografie della Societas Herpetologica Italica - I. Edizioni Belvedere.

    Google Scholar 

  • Sindaco, R., Metallinou, M., Pupin, F., Fasola, M., & Carranza, S. (2012). Forgotten in the ocean: systematics, biogeography and evolution of the Trachylepis skinks of the Socotra Archipelago. Zoologica Scripta, 41(4), 346–362.

    Article  Google Scholar 

  • Sindaco, R., Venchi, A., & Grieco, C. (2013). The reptiles of the Western Palearctic. 2. Annotated checklist and distributional atlas of the snakes of Europe, North Africa, Middle East and Central Asia, with an update to the Vol. 1.. Latina (Italy): Monografie della Societas Herpetologica Italica - I. Edizioni Belvedere.

    Google Scholar 

  • Šmíd, J., Mazuch, T., & Sindaco, R. (2014). An additional record of the little known gecko Hemidactylus granchii Lanza, 1978 (Reptilia: Gekkonidae) from Somalia. In M. Capula, & C. C. (Eds.), Scripta Herpetologica. Studies on Amphibians and Reptiles in honour of Benedetto Lanza (pp. 165–169). Latina (Italy): Societas Herpetologica Italica.

  • Šmíd, J., Carranza, S., Kratochvíl, L., Gvoždík, V., Nasher, A. K., & Moravec, J. (2013a). Out of Arabia: a complex biogeographic history of multiple vicariance and dispersal events in the gecko genus Hemidactylus (Reptilia: Gekkonidae). PLoS ONE, 8(5), e64018.

    Article  PubMed  PubMed Central  Google Scholar 

  • Šmíd, J., Moravec, J., Kratochvíl, L., Gvoždík, V., Nasher, A. K., Busais, S., et al. (2013b). Two newly recognized species of Hemidactylus (Squamata, Gekkonidae) from the Arabian Peninsula and Sinai, Egypt. ZooKeys, 355, 79–107.

    Article  Google Scholar 

  • Šmíd, J., Moravec, J., Kratochvíl, L., Nasher, A. K., Mazuch, T., Gvoždík, V., et al. (2015). Multilocus phylogeny and taxonomic revision of the Hemidactylus robustus species group (Reptilia, Gekkonidae) with descriptions of three new species from Yemen and Ethiopia. Systematics and Biodiversity, 13(4), 346–368.

    Article  Google Scholar 

  • Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22(21), 2688–2690.

    Article  CAS  PubMed  Google Scholar 

  • Stephens, M., Smith, N. J., & Donnelly, P. (2001). A new statistical method for haplotype reconstruction from population data. American Journal of Human Genetics, 68(4), 978–989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talavera, G., & Castresana, J. (2007). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology, 56(4), 564–577.

    Article  CAS  PubMed  Google Scholar 

  • Tamar, K., Scholz, S., Crochet, P.-A., Geniez, P., Meiri, S., Schmitz, A., et al. (2016). Evolution around the Red Sea: systematics and biogeography of the agamid genus Pseudotrapelus (Squamata: Agamidae) from North Africa and Arabia. Molecular Phylogenetics and Evolution, 97, 55–68.

    Article  PubMed  Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Templeton, A. R., Crandall, K. A., & Sing, C. F. (1992). A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics, 132(2), 619–633.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vanhooydonck, B., & Van Damme, R. (1999). Evolutionary relationships between body shape and habitat use in lacertid lizards. Evolutionary Ecology Research, 1(7), 785–805.

    Google Scholar 

  • Vasconcelos, R., & Carranza, S. (2014). Systematics and biogeography of Hemidactylus homoeolepis Blanford, 1881 (Squamata: Gekkonidae), with the description of a new species from Arabia. Zootaxa, 3835(4), 501–527.

    Article  PubMed  Google Scholar 

  • Vitt, L. J., & de Carvalho, C. M. (1995). Niche partitioning in a tropical wet season: lizards in the lavrado area of northern Brazil. Copeia, 2, 305–329.

  • Wollenberg, K. C., Vieites, D. R., Van Der Meijden, A., Glaw, F., Cannatella, D. C., & Vences, M. (2008). Patterns of endemism and species richness in Malagasy cophyline frogs support a key role of mountainous areas for speciation. Evolution, 62(8), 1890–1907.

    Article  PubMed  Google Scholar 

  • Yang, Z. (2014). BP&P Version 3. Available at http://abacus.gene.ucl.ac.uk/software.html.

  • Yang, Z., & Rannala, B. (2010). Bayesian species delimitation using multilocus sequence data. Proceedings of the National Academy of Sciences, 107(20), 9264–9269.

    Article  CAS  Google Scholar 

  • Zachos, F. E. (2015). Taxonomic inflation, the phylogenetic species concept and lineages in the Tree of Life—a cautionary comment on species splitting. Journal of Zoological Systematics and Evolutionary Research, 53(2), 180–184.

    Article  Google Scholar 

  • Zhang, C., Rannala, B., & Yang, Z. (2014). Bayesian species delimitation can be robust to guide-tree inference errors. Systematic Biology, 63(6), 993–1004.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank all curators who granted us access to or provided tissue samples of material housed in their collections, namely, B. Clarke, E. N. Arnold, and P. D. Campbell (BMNH); J. Vindum (CAS); R. Sindaco, and G. Boano (MCCI); G. Doria (MSNG); S. Scali (MSNM); A. Nistri (MZUF); J. Moravec (NMP); S. B. El Din (SMB); G. Köhler, and L. Acker (SMF). Special thanks are due to T. Mazuch (TMHC) for providing pictures of the syntype of H. yerburii. We are thankful to the Deanship of academic research at the Taif University for funding and issuing collection permit for sampling in Saudi Arabia (Grant No. 1–433–2108). We thank Omer Baeshen, Environment Protection Agency, Sana’a, Republic of Yemen, for issuing the collection permit (Ref 10/2007). The manuscript benefitted from comments of two anonymous reviewers, and the English was significantly improved by Jessica da Silva and Jody Taft. This work was supported by the Ministry of Culture of the Czech Republic under grant DKRVO 2016/15, National Museum, 00023272 (JŠ), and grant CGL2015-70390-P (MINECO-FEDER) (SC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Šmíd.

Supplementary information

Below is the link to the electronic supplementary material.

Figure S1

Maximum likelihood tree of 259 unique haplotypes representing 339 individuals analyzed and based on the two mtDNA genes concatenated (1517 bp). The three monophyletic groups that are the subject of this study are highlighted in grey. Bootstrap values ≥ 70 are shown above branches. (JPG 4030 kb)

Figure S2

Head shape differentiation of the eleven analyzed Hemidactylus species along the first and second component of the PCA. Mean values and standard deviations are shown for both axes. (JPG 173 kb)

ESM 1

Table S1. List of collections and their acronyms from which material for this study has been examined either morphologically or genetically. Table S2. All material used for the genetic and morphological analyses and corresponding details such as GenBank accession numbers, morphological characters measured, MorphoBank picture numbers and taxonomic details of each specimen. ‘Sample code’ column refers to individual codes as shown in Fig. S1; ‘Analyses’ column indicates for which phylogenetic analyses each sample has been used; ‘Sex’ is coded 0 – female, 1 – male, 2 – juvenile; for details on the morphological characters measured see Methods; ‘Specimen details” column refers to taxonomic type information. Table S3. Mean uncorrected p distances (pairwise deletion) between all Hemidactylus species used for the *BEAST analyses based on fragments of the 12S gene (after Gblocks, below the diagonal) and cytb (above the diagonal). Table S4. Morphological comparison of the SW Arabian Hemidactylus species. Hemidactylus pauciporosus as a former subspecies of H. yerburii is added to the comparison. Mean ± standard deviation and sample sizes are given. (XLS 223 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šmíd, J., Shobrak, M., Wilms, T. et al. Endemic diversification in the mountains: genetic, morphological, and geographical differentiation of the Hemidactylus geckos in southwestern Arabia. Org Divers Evol 17, 267–285 (2017). https://doi.org/10.1007/s13127-016-0293-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-016-0293-3

Keywords

Navigation