Skip to main content
Log in

Revisiting Amazonian phylogeography: insights into diversification hypotheses and novel perspectives

  • Review
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

The Amazon Basin harbors one of the richest biotas on Earth, such that a number of diversification hypotheses have been formulated to explain patterns of Amazonian biodiversity and biogeography. For nearly two decades, phylogeographic approaches have been applied to better understand the underlying causes of genetic differentiation and geographic structure among Amazonian organisms. Although this research program has made progress in elucidating several aspects of species diversification in the region, recent methodological and theoretical developments in the discipline of phylogeography will provide new perspectives through more robust hypothesis testing. Herein, we outline central aspects of Amazonian geology and landscape evolution as well as climate and vegetation dynamics through the Neogene and Quaternary to contextualize the historical settings considered by major hypotheses of diversification. We address each of these hypotheses by reviewing key phylogeographic papers and by expanding their respective predictions. We also propose future directions for devising and testing hypotheses. Specifically, combining the exploratory power of phylogeography with the statistical rigor of coalescent methods will greatly expand analytical inferences on the evolutionary history of Amazonian biota. Incorporation of non-genetic data from Earth science disciplines into the phylogeographic approach is key to a better understanding of the influence of climatic and geophysical events on patterns of Amazonian biodiversity and biogeography. In addition, achieving such an integrative enterprise must involve overcoming issues such as limited geographic and taxonomic sampling. These future challenges likely will be accomplished by a combination of extensive collaborative research and incentives for conducting basic inventories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aleixo, A. (2004). Historical diversification of a terra-firme forest bird superspecies: a phylogeographic perspective on the role of different hypotheses of Amazonian diversification. Evolution, 58, 1303–1317.

    Google Scholar 

  • Aleixo, A. (2006). Historical diversification of floodplain forest specialist species in the Amazon: a case study with two species of the avian genus Xiphorhynchus (Aves: Dendrocolaptidae). Biological Journal of the Linnean Society, 89, 383–395.

    Google Scholar 

  • Aleixo, A., & Rossetti, D. F. (2007). Avian gene trees, landscape evolution, and geology: towards a modern synthesis of Amazonian historical biogeography? Journal of Ornithology, 148, S443–S453.

    Google Scholar 

  • Anderson, D. R., Burnham, K. P., & Thompson, W. L. (2000). Null hypothesis testing: problems, prevalence, and an alternative. Journal of Wildlife Management, 64, 912–923.

    Google Scholar 

  • Antonelli, A., & Rodriguez, V. (2009). Brazil should facilitate research permits. Conservation Biology, 23, 1068–1069.

    PubMed  Google Scholar 

  • Antonelli, A., Quijada-Mascareñas, A., Crawford, A. J., Bates, J. M., Velazco, P. M., & Wüster, W. (2010). Molecular studies and phylogeography of Amazonian tetrapods and their relation to geological and climatic models. In C. Hoorn & F. P. Wesselingh (Eds.), Amazonia: landscape and species evolution. A look into the past (pp. 386–404). Chichester: Wiley–Blackwell.

  • Arbogast, B. S., & Kenagy, G. J. (2001). Comparative phylogeography as an integrative approach to historical biogeography. Journal of Biogeography, 28, 819–825.

    Google Scholar 

  • Arbogast, B. S., Edwards, S. V., Wakeley, J., Beerli, P., & Slowinski, J. B. (2002). Estimating divergence times from molecular data on phylogenetic and population genetic timescales. Annual Review of Ecology and Systematics, 33, 707–740.

    Google Scholar 

  • Armenta, J. K., Weckstein, J. D., & Lane, D. F. (2005). Geographic variation in mitochondrial DNA sequences of an Amazonian nonpassarine: the black-spotted barbet complex. Condor, 107, 527–536.

    Google Scholar 

  • Avise, J. C. (2000). Phylogeography: the history and formation of species. Cambridge: Harvard University Press.

    Google Scholar 

  • Avise, J. C. (2009). Phylogeography: retrospect and prospect. Journal of Biogeography, 36, 3–15.

    Google Scholar 

  • Avise, J. C., Arnold, J., Ball, R. M., Bermingham, E., Lamb, T., Neigel, J. E., et al. (1987). Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics, 18, 489–522.

    Google Scholar 

  • Ayres, J. M., & Clutton-Brock, T. H. (1992). River boundaries and species range size in Amazonian primates. American Naturalist, 140, 531–537.

    Google Scholar 

  • Ballard, J. W. O., & Whitlock, M. C. (2004). The incomplete natural history of mitochondria. Molecular Ecology, 13, 729–744.

    PubMed  Google Scholar 

  • Barlow, J., Ewers, R. M., Anderson, L., Aragao, L. E. O. C., Baker, T. R., Boyd, E., et al. (2011). Using learning networks to understand complex systems: a case study of biological, geophysical and social research in the Amazon. Biological Reviews, 86, 457–474.

    PubMed  Google Scholar 

  • Bates, J. M., Haffer, J., & Grismer, E. (2004). Avian mitochondrial DNA sequence divergence across a headwater stream of the Rio Tapajós, a major Amazonian river. Journal of Ornithology, 145, 199–205.

    Google Scholar 

  • Beaumont, M. A., Nielsen, R., Robert, C., Hey, J., Gaggiotti, O., Knowles, L., et al. (2010). In defence of model-based inference in phylogeography. Molecular Ecology, 19, 436–446.

    Google Scholar 

  • Beheregaray, L. B. (2008). Twenty years of phylogeography: the state of the field and the challenges for the Southern Hemisphere. Molecular Ecology, 17, 3754–3774.

    PubMed  Google Scholar 

  • Bermingham, E., & Moritz, C. (1998). Comparative phylogeography: concepts and applications. Molecular Ecology, 7, 367–369.

    Google Scholar 

  • Bigarella, J. J., & Ferreira, A. M. M. (1985). Amazonian geology and the Pleistocene and the Cenozoic environments and paleoclimates. In G. T. Prance & T. E. Lovejoy (Eds.), Key environments: Amazonia (pp. 49–71). Oxford: Pergamon.

    Google Scholar 

  • Bonaccorso, E., Koch, I., & Peterson, A. T. (2006). Pleistocene fragmentation of Amazon species' ranges. Diversity and Distributions, 12, 157–164.

    Google Scholar 

  • Bonvicino, C. R., & Weksler, M. (2012). Speciation in Amazonia: patterns and predictions of a network of hypotheses. In B. D. Patterson & L. P. Costa (Eds.), Bones, clones, and biomes (pp. 259–282). Chicago: University of Chicago Press.

    Google Scholar 

  • Bonvicino, C. R., Gonçalves, P. R., de Oliveira, J. A., de Oliveira, L. F. B., & Mattevi, M. S. (2009). Divergence in Zygodontomys (Rodentia: Sigmodontinae) and distribution of Amazonian savannas. Journal of Heredity, 100, 322–328.

    PubMed  Google Scholar 

  • Bowcock, A. M., Ruiz-Linares, A., Tomfohrde, J., Minch, E., Kidd, J. R., & Cavalli-Sforza, L. L. (1994). High resolution of human evolutionary trees with polymorphic microsatellites. Nature, 368, 455–457.

    Google Scholar 

  • Brito, P., & Edwards, S. (2009). Multilocus phylogeography and phylogenetics using sequence-based markers. Genetica, 135, 439–455.

    Google Scholar 

  • Buckley, D. (2009). Toward an organismal, integrative, and iterative phylogeography. BioEssays, 31, 784–793.

    PubMed  Google Scholar 

  • Bush, M. B. (1994). Amazonian speciation: a necessarily complex model. Journal of Biogeography, 21, 5–17.

    Google Scholar 

  • Bush, M. B. (2002). On the interpretation of fossil Poaceae pollen in the lowland humid neotropics. Palaeogeography, Palaeoclimatology, Palaeoecology, 177, 5–17.

    Google Scholar 

  • Bush, M. B., De Oliveira, P. E., Colinvaux, P. A., Miller, M. C., & Moreno, J. E. (2004). Amazonian paleoecological histories: one hill, three watersheds. Palaeogeography, Palaeoclimatology, Palaeoecology, 214, 359–393.

    Google Scholar 

  • Cadena, C. D., Gutiérrez-Pinto, N., Dávila, N., & Chesser, R. T. (2011). No population genetic structure in a widespread aquatic songbird from the Neotropics. Molecular Phylogenetics and Evolution, 58, 540–545.

    Google Scholar 

  • Campbell, K. E. (2010). Late Miocene onset of the Amazon River and the Amazon deep-sea fan: evidence from the Foz do Amazonas Basin. Comment. Geology, 38, e212.

  • Campbell, K. E., Frailey, C. D., & Romero-Pittman, L. (2006). The Pan-Amazonian Ucayali Peneplain, late Neogene sedimentation in Amazonia, and the birth of the modern Amazon River system. Palaeogeography, Palaeoclimatology, Palaeoecology, 239, 166–219.

  • Capparella, A. P. (1988). Genetic variation in Neotropical birds: implications for the speciation process. Acta Congressus Internationalis Ornithologici, 19, 1658–1664.

    Google Scholar 

  • Capparella, A. P. (1992). Neotropical avian diversity and riverine barriers. Acta Congressus Internationalis Ornithologici, 20, 307–316.

    Google Scholar 

  • Caputo, M. V. (1991). Solimões megashear: intraplate tectonics in northwestern Brazil. Geology, 19, 246–249.

    Google Scholar 

  • Carling, M. D., & Brumfield, R. T. (2007). Gene sampling strategies for multi-locus population estimates of genetic diversity θ. PLoS ONE, 2, e160.

  • Carnaval, A. C., Hickerson, M. J., Haddad, C. F. B., Rodrigues, M. T., & Moritz, C. (2009). Stability predicts genetic diversity in the Brazilian Atlantic Forest hotspot. Science, 323, 785–789.

    PubMed  CAS  Google Scholar 

  • Carstens, B. C., & Richards, C. L. (2007). Integrating coalescent and ecological niche modeling in comparative phylogeography. Evolution, 61, 1439–1454.

    PubMed  Google Scholar 

  • Carstens, B. C., Brunsfeld, S. J., Demboski, J. R., Good, J. M., & Sullivan, J. (2005). Investigating the evolutionary history of the Pacific Northwest mesic forest ecosystem: hypothesis testing within a comparative phylogeographic framework. Evolution, 59, 1639–1652.

    PubMed  CAS  Google Scholar 

  • Carstens, B. C., Stoute, H. N., & Reid, N. M. (2009). An information-theoretical approach to phylogeography. Molecular Ecology, 18, 4270–4282.

    Google Scholar 

  • Carstens, B., Lemmon, A. R., & Lemmon, E. M. (2012). The promises and pitfalls of next-generation sequencing data in phylogeography. Systematic Biology, 61, 713–715.

    Google Scholar 

  • Cheviron, Z. A., Hackett, S. J., & Capparella, A. P. (2005). Complex evolutionary history of a Neotropical lowland forest bird (Lepidothrix coronata) and its implications for historical hypotheses of the origin of Neotropical avian diversity. Molecular Phylogenetics and Evolution, 36, 338–357.

    PubMed  CAS  Google Scholar 

  • Colinvaux, P. A. (1993). Pleistocene biogeograhy and diversity in tropical forests of South America. In P. Goldblatt (Ed.), Biological relationships between Africa and South America (pp. 473–499). New Haven: Yale University Press.

    Google Scholar 

  • Colinvaux, P. A., & De Oliveira, P. E. (2001). Amazon plant diversity and climate through the Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 166, 51–63.

    Google Scholar 

  • Colinvaux, P. A., Oliveira, P. E., Moreno, J. E., Miller, M. C., & Bush, M. B. (1996). A long pollen record from lowland Amazonia: forest and cooling in glacial times. Science, 274, 84–88.

    Google Scholar 

  • Colinvaux, P. A., De Oliveira, P. E., & Bush, M. B. (2000). Amazonian and Neotropical plant communities on glacial time-scales: the failure of the aridity and refuge hypotheses. Quaternary Science Reviews, 19, 141–169.

    Google Scholar 

  • Costa, J. B. S., Bemerguy, R. L., Hasui, Y., & Borges, M. S. (2001). Tectonics and paleogeography along the Amazon river. Journal of South American Earth Sciences, 14, 335–347.

    Google Scholar 

  • Cracraft, J. (2001). Managing the biosphere: the essential role of systematic biology. In M. J. Novacek (Ed.), The biodiversity crisis: losing what counts (pp. 150–154). New York: New.

    Google Scholar 

  • Cunha, P. R. C., de Melo, J. H. G., & da Silva, O. B. (2007). Bacia do Amazonas. Boletim de Geociências da Petrobrás, 15, 227–251.

    Google Scholar 

  • da Silva, M. N. F., & Patton, J. L. (1993). Amazonian phylogeography: mtDNA sequence variation in arboreal echimyid rodents (Caviomorpha). Molecular Phylogenetics and Evolution, 2, 243–255.

    PubMed  Google Scholar 

  • Dasmahapatra, K. K., Lamas, G., Simpson, F., & Mallet, J. (2010). The anatomy of a ‘suture zone’ in Amazonian butterflies: a coalescent-based test for vicariant geographic divergence and speciation. Molecular Ecology, 19, 4283–4301.

    Google Scholar 

  • de Thoisy, B., da Silva, A., Ruiz-García, M., Tapia, A., Ramirez, O., Arana, M., et al. (2010). Population history, phylogeography, and conservation genetics of the last Neotropical mega-herbivore, the lowland tapir (Tapirus terrestris). BMC Evolutionary Biology, 10, 278.

  • Dingle, C., Lovette, I. J., Canaday, C., Smith, T. B., & Fleischer, R. C. (2006). Elevational zonation and the phylogenetic relationships of the Henicorhina wood-wrens. Auk, 123, 119–134.

    Google Scholar 

  • Dobson, D. M., Dickens, G. R., & Rea, D. K. (2001). Terrigenous sediment on Ceara Rise: a Cenozoic record of South American orogeny and erosion. Palaeogeography, Palaeoclimatology, Palaeoecology, 165, 215–229.

    Google Scholar 

  • Edwards, S. V., & Beerli, P. (2000). Perspective: gene divergence, population divergence, and the variance in coalescence time in phylogeographic studies. Evolution, 54, 1839–1854.

    PubMed  CAS  Google Scholar 

  • Elmer, K., Davila, J., & Lougheed, S. (2007). Cryptic diversity and deep divergence in an upper Amazonian leaflitter frog, Eleutherodactylus ockendeni. BMC Evolutionary Biology, 7, 247.

    PubMed  Google Scholar 

  • Emerson, B. C., & Hewitt, G. M. (2005). Phylogeography. Current Biology, 15, R367–R371.

    PubMed  CAS  Google Scholar 

  • Endler, J. (1977). Geographic variation, speciation, and clines. Princeton: Princeton University Press.

    Google Scholar 

  • Endler, J. (1982). Pleistocene forest refuges: fact or fancy? In G. T. Prance (Ed.), Biological diversification in the Tropics (pp. 641–657). New York: Columbia University Press.

    Google Scholar 

  • Espurt, N., Baby, P., Brusset, S., Roddaz, M., Hermoza, W., & Barbarand, J. (2010). The Nazca Ridge and uplift of the Fitzcarrald Arch: implications for regional geology in northern South America. In C. Hoorn & F. P. Wesselingh (Eds.), Amazonia: landscape and species evolution. A look into the past (pp. 89–100). Chichester: Wiley–Blackwell.

    Google Scholar 

  • Fearnside, P. M. (1997). Environmental services as a strategy for sustainable development in rural Amazonia. Ecological Economics, 20, 53–70.

    Google Scholar 

  • Felsenstein, J. (2006). Accuracy of coalescent likelihood estimates: do we need more sites, more sequences, or more loci? Molecular Biology and Evolution, 23, 691–700.

    PubMed  CAS  Google Scholar 

  • Figueiredo, J., Hoorn, C., van der Ven, P., & Soares, E. (2009). Late Miocene onset of the Amazon River and the Amazon deep-sea fan: evidence from the Foz do Amazonas Basin. Geology, 37, 619–622.

    Google Scholar 

  • Figueiredo, J., Hoorn, C., van der Ven, P., & Soares, E. (2010). Late Miocene onset of the Amazon River and the Amazon deep-sea fan: evidence from the Foz do Amazonas Basin. Reply. Geology, 38, e213.

  • Fouquet, A., Noonan, B. P., Rodrigues, M. T., Pech, N., Gilles, A., & Gemmell, N. J. (2012). Multiple Quaternary refugia in the eastern Guiana Shield revealed by comparative phylogeography of 12 frog species. Systematic Biology.

  • Funk, W. C., Caldwell, J. P., Peden, C. E., Padial, J. M., De la Riva, I., & Cannatella, D. C. (2007). Tests of biogeographic hypotheses for diversification in the Amazonian forest frog, Physalaemus petersi. Molecular Phylogenetics and Evolution, 44, 825–837.

    PubMed  CAS  Google Scholar 

  • Funk, W. C., Caminer, M., & Ron, S. R. (2012). High levels of cryptic species diversity uncovered in Amazonian frogs. Proceedings of the Royal Society B: Biological Sciences, 279, 1806–1814.

    PubMed  Google Scholar 

  • Garda, A. A., Da Silva, J. M. C., & Baião, P. C. (2010). Biodiversity conservation and sustainable development in the Amazon. Systematics and Biodiversity, 8, 169–175.

    Google Scholar 

  • Garrick, R. C., Caccone, A., & Sunnucks, P. (2010). Inference of population history by coupling exploratory and model-driven phylogeographic analyses. International Journal of Molecular Sciences, 11, 1190–1227.

    Google Scholar 

  • Gascon, C., Lougheed, S. C., & Bogart, J. P. (1996). Genetic and morphological variation in Vanzolinius discodactylus: a test of the river hypothesis of speciation. Biotropica, 28, 376–387.

    Google Scholar 

  • Gascon, C., Lougheed, S. C., & Bogart, J. P. (1998). Patterns of genetic population differentiation in four species of Amazonian frogs: a test of the riverine barrier hypothesis. Biotropica, 30, 104–119.

    Google Scholar 

  • Gosling, W. D., & Bush, M. B. (2005). A biogeographic comment on: Wüster et al. (2005) Tracing an invasion: landbridges, refugia, and the phylogeography of the Neotropical rattlesnake (Serpentes: Viperidae: Crotalus durissus). Molecular Ecology, 14, 3615–3617.

    PubMed  Google Scholar 

  • Graham, C. H., Ron, S. R., Santos, J. C., Schneider, C. J., Moritz, C., & Cunningham, C. (2004). Integrating phylogenetics and environmental niche models to explore speciation mechanisms in dedrobatid frogs. Evolution, 58, 1781–1793.

    PubMed  Google Scholar 

  • Haberle, S. G., & Maslin, M. A. (1999). Late Quaternary vegetation and climate change in the Amazon Basin based on a 50,000 year pollen record from the Amazon Fan, ODP Site 932. Quaternary Research, 51, 27–38.

    Google Scholar 

  • Haffer, J. (1969). Speciation in Amazonian forest birds. Science, 165, 131–137.

    PubMed  CAS  Google Scholar 

  • Haffer, J. (1982). General aspects of the refuge theory. In G. T. Prance (Ed.), Biological diversification in the Tropics (pp. 6–24). New York: Columbia University Press.

    Google Scholar 

  • Haffer, J. (1993). Time's cycle and time's arrow in the history of Amazonia. Biogeographica, 69, 15–45.

    Google Scholar 

  • Haffer, J. (1997). Alternative models of vertebrate speciation in Amazonia: an overview. Biodiversity and Conservation, 6, 451–476.

    Google Scholar 

  • Haffer, J., & Prance, G. T. (2001). Climatic forcing of evolution in Amazonia during the Cenozoic: on the refuge theory of biotic differentiation. Amazoniana, 16, 579–608.

    Google Scholar 

  • Hall, J. P. W., & Harvey, D. J. (2002). The phylogeography of Amazonia revisited: new evidence from riodinid butterflies. Evolution, 56, 1489–1497.

    PubMed  Google Scholar 

  • Haq, B. U., Hardenbol, J. A. N., & Vail, P. R. (1987). Chronology of fluctuating sea levels since the Triassic. Science, 235, 1156–1167.

    PubMed  CAS  Google Scholar 

  • Hare, M. P. (2001). Prospects for nuclear gene phylogeography. Trends in Ecology and Evolution, 16, 700–706.

    Google Scholar 

  • Harris, S. E., & Mix, A. C. (1999). Pleistocene precipitation balance in the Amazon Basin recorded in deep sea sediments. Quaternary Research, 51, 14–26.

    Google Scholar 

  • Hayes, F. E., & Sewlal, J. A. N. (2004). The Amazon River as a dispersal barrier to passerine birds: effects of river width, habitat and taxonomy. Journal of Biogeography, 31, 1809–1818.

    Google Scholar 

  • Hein, J., Schierup, M. H., & Wiuf, C. (2005). Gene genealogies, variation and evolution: a primer in coalescent theory. Oxford: Oxford University Press.

    Google Scholar 

  • Hernández, R. M., Jordan, T. E., Dalenz Farjat, A., Echavarría, L., Idleman, B. D., & Reynolds, J. H. (2005). Age, distribution, tectonics, and eustatic controls of the Paranense and Caribbean marine transgressions in southern Bolivia and Argentina. Journal of South American Earth Sciences, 19, 495–512.

    Google Scholar 

  • Hewitt, G. M. (1996). Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society, 58, 247–276.

    Google Scholar 

  • Hewitt, G. (2000). The genetic legacy of the Quaternary ice ages. Nature, 405, 907–913.

    PubMed  CAS  Google Scholar 

  • Hey, J., & Machado, C. A. (2003). The study of structured populations—new hope for a difficult and divided science. Nature Review Genetics, 4, 535–543.

    CAS  Google Scholar 

  • Hickerson, M. J., Carstens, B. C., Cavender-Bares, J., Crandall, K. A., Graham, C. H., Johnson, J. B., et al. (2010). Phylogeography's past, present, and future: 10 years after Avise, 2000. Molecular Phylogenetics and Evolution, 54, 291–301.

  • Higgins, M. A., Ruokolainen, K., Tuomisto, H., Llerena, N., Cardenas, G., Phillips, O. L., et al. (2011). Geological control of floristic composition in Amazonian forests. Journal of Biogeography, 38, 2136–2149.

    PubMed  Google Scholar 

  • Hooghiemstra, H., & van der Hammen, T. (1998). Neogene and Quaternary development of the neotropical rain forest: the forest refugia hypothesis, and a literature overview. Earth-Science Reviews, 44, 147–183.

    Google Scholar 

  • Hoorn, C. (1993). Marine incursions and the influence of Andean tectonics on the Miocene depositional history of northwestern Amazonia: results of a palynostratigraphic study. Palaeogeography, Palaeoclimatology, Palaeoecology, 105, 267–309.

    Google Scholar 

  • Hoorn, C. (1994). An environmental reconstruction of the palaeo-Amazon River system (Middle–Late Miocene, NW Amazonia). Palaeogeography, Palaeoclimatology, Palaeoecology, 112, 187–238.

    Google Scholar 

  • Hoorn, C., & Wesselingh, F. P. (2010). Introduction: Amazonia, landscape and species evolution. In C. Hoorn & F. P. Wesselingh (Eds.), Amazonia: landscape and species evolution. A look into the past (pp. 1–6). Chichester: Wiley–Blackwell.

    Google Scholar 

  • Hoorn, C., Guerrero, J., Sarmiento, G. A., & Lorente, M. A. (1995). Andean tectonics as a cause for changing drainage patterns in Miocene northern South America. Geology, 23, 237–240.

    Google Scholar 

  • Hoorn, C., Roddaz, M., Dino, R., Soares, E., Uba, C., Ochoa-Lozano, D., et al. (2010a). The Amazonian Craton and its influence on past fluvial systems (Mesozoic–Cenozoic, Amazonia). In C. Hoorn & F. P. Wesselingh (Eds.), Amazonia: landscape and species evolution. A look into the past (pp. 101–122). Chichester: Wiley–Blackwell.

  • Hoorn, C., Wesselingh, F. P., Hovikoski, J., & Guerrero, J. (2010b). The development of the amazonian mega-wetland (Miocene; Brazil, Colombia, Peru, Bolivia). In C. Hoorn & F. P. Wesselingh (Eds.), Amazonia: landscape and species evolution. A look into the past (pp. 123–142). Chichester: Wiley–Blackwell.

  • Hoorn, C., Wesselingh, F. P., ter Steege, H., Bermudez, M. A., Mora, A., Sevink, J., et al. (2010c). Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science, 330, 927–931.

    PubMed  CAS  Google Scholar 

  • Horton, B. K., Parra, M., Saylor, J. E., Nie, J., Mora, A., Torres, V., et al. (2010). Resolving uplift of the northern Andes using detrital zircon age signatures. GSA Today, 20, 4–9.

    Google Scholar 

  • Hovikoski, J., Wesselingh, F. P., Räsänen, M., Gingras, M., & Vonhof, H. B. (2010). Marine influence in Amazonia: evidence from the geological record. In C. Hoorn & F. P. Wesselingh (Eds.), Amazonia: landscape and species evolution. A look into the past (pp. 143–161). Chichester: Wiley–Blackwell.

    Google Scholar 

  • Ibrahim, K. M., Nichols, R. A., & Hewitt, G. M. (1996). Spatial patterns of genetic variation generated by different forms of dispersal during range expansion. Heredity, 77, 282–291.

    Google Scholar 

  • Irion, G., & Kalliola, R. (2010). Long-term landscape development processes in Amazonia. In C. Hoorn & F. P. Wesselingh (Eds.), Amazonia: landscape and species evolution. A look into the past (pp. 185–197). Chichester: Wiley–Blackwell.

  • Irion, G., Rasanen, M., de Mello, N., Hoorn, C., Junk, W., & Wesselingh, F. (2005). D. Rossetti, P. Mann de Toledo, A.-M. Goes, New geological framework for Western Amazonia (Brazil) and implications for biogeography and evolution, quaternary research 63 (2005) 78–89. Quaternary Research, 64, 279–280.

    Google Scholar 

  • Jacobs, S. C., Larson, A., & Cheverud, J. M. (1995). Phylogenetic relationships and orthogenetic evolution of coat color among tamarins (genus Saguinus). Systematic Biology, 44, 515–532.

    Google Scholar 

  • Jaramillo, C., Rueda, M. J., & Mora, G. (2006). Cenozoic plant diversity in the Neotropics. Science, 311, 1893–1896.

    PubMed  CAS  Google Scholar 

  • Kaandorp, R. J. G., Vonhof, H. B., Wesselingh, F. P., Pittman, L. R., Kroon, D., & van Hinte, J. E. (2005). Seasonal Amazonian rainfall variation in the Miocene Climate Optimum. Palaeogeography, Palaeoclimatology, Palaeoecology, 221, 1–6.

    Google Scholar 

  • Kaplan, N. L., Hudson, R. R., & Langley, C. H. (1989). The hitchhiking effect revisited. Genetics, 123, 887–899.

    PubMed  CAS  Google Scholar 

  • Kastner, T. P., & Goñi, M. A. (2003). Constancy in the vegetation of the Amazon Basin during the late Pleistocene: evidence from the organic matter composition of Amazon deep sea fan sediments. Geology, 31, 291–294.

    CAS  Google Scholar 

  • Kirby, K. R., Laurance, W. F., Albernaz, A. K., Schroth, G., Fearnside, P. M., Bergen, S., et al. (2006). The future of deforestation in the Brazilian Amazon. Futures, 38, 432–453.

    Google Scholar 

  • Knowles, L. L. (2004). The burgeoning field of statistical phylogeography. Journal of Evolutionary Biology, 17, 1–10.

    PubMed  CAS  Google Scholar 

  • Knowles, L. L. (2009). Statistical phylogeography. Annual Review of Ecology, Evolution, and Systematics, 40, 593–612.

    Google Scholar 

  • Knowles, L. L., & Maddison, W. P. (2002). Statistical phylogeography. Molecular Ecology, 11, 2623–2635.

    PubMed  Google Scholar 

  • Kress, W. J., Heyer, W. R., Acevedo, P., Coddington, J., Cole, D., Erwin, T. L., et al. (1998). Amazonian biodiversity: assessing conservation priorities with taxonomic data. Biodiversity and Conservation, 7, 1577–1587.

    Google Scholar 

  • Kroonenberg, S. B., & de Roever, E. W. F. (2010). Geological evolution of the Amazonian Craton. In C. Hoorn & F. P. Wesselingh (Eds.), Amazonia: landscape and species evolution. A look into the past (pp. 7–28). Chichester: Wiley–Blackwell.

    Google Scholar 

  • Kuhner, M. K. (2008). Coalescent genealogy samplers: windows into population history. Trends in Ecology and Evolution, 24, 86–93.

    PubMed  Google Scholar 

  • Laurance, W. F. (2005). When bigger is better: the need for Amazonian mega-reserves. Trends in Ecology and Evolution, 20, 645–648.

    Google Scholar 

  • Lee, J. Y., & Edwards, S. V. (2008). Divergence across Australia's Carpentarian Barrier: statistical phylogeography of the red-backed fairy wren (Malurus melanocephalus). Evolution, 62, 3117–3134.

    Google Scholar 

  • Lemos, R. (2012). Educate and innovate. Foreign Affairs, 91, 163–164.

    Google Scholar 

  • Lessa, E. P., Cook, J. A., & Patton, J. L. (2003). Genetic footprints of demographic expansion in North America, but not Amazonia, during the Late Quaternary. Proceedings of the National Academy of Sciences of the United States of America, 100, 10331–10334.

    PubMed  CAS  Google Scholar 

  • López-Osorio, F., & Miranda-Esquivel, D. R. (2010). A Phylogenetic approach to conserving Amazonian biodiversity. Conservation Biology, 24, 1359–1366.

    Google Scholar 

  • Lötters, S., van der Meijden, A., Rödder, D., Köster, T. E., Kraus, T., La Marca, E., et al. (2010). Reinforcing and expanding the predictions of the disturbance vicariance hypothesis in Amazonian harlequin frogs: a molecular phylogenetic and climate envelope modelling approach. Biodiversity and Conservation, 19, 2125–2146.

    Google Scholar 

  • Lougheed, S. C., Gascon, C., Jones, D. A., Bogart, J. P., & Boag, P. T. (1999). Ridges and rivers: a test of competing hypotheses of Amazonian diversification using a dart-poison frog (Epipedobates femoralis). Proceedings of the Royal Society of London, Series B: Biological Sciences, 266, 1829–1835.

  • Lynch, J. D. (1988). Refugia. In A. A. Myers & P. S. Giller (Eds.), Analytical biogeography: an integrated approach to the study of animal and plant distributions (pp. 309–342). New York: Chapman & Hall.

    Google Scholar 

  • Maddison, W. P. (1997). Gene trees in species trees. Systematic Biology, 46, 523–536.

    Google Scholar 

  • Massarani, L. (2012). Innovation is 'imperative', says Brazil science minister. Nature News. doi:10.1038/nature.2012.9903.

    Google Scholar 

  • Mayle, F. E., & Power, M. J. (2008). Impact of a drier Early–Mid-Holocene climate upon Amazonian forests. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 363, 1829–1838.

    Google Scholar 

  • Mayle, F. E., Beerling, D. J., Gosling, W. D., & Bush, M. B. (2004). Responses of Amazonian ecosystems to climatic and atmospheric carbon dioxide changes since the last glacial maximum. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 359, 499–514.

    CAS  Google Scholar 

  • McCormack, J. E., Heled, J., Delaney, K. S., Peterson, A. T., & Knowles, L. L. (2011). Calibrating divergence times on species trees versus gene trees: implications for speciation history of Aphelocoma jays. Evolution, 65, 184–202.

    PubMed  Google Scholar 

  • McCormack, J. E., Hird, S. M., Zellmer, A. J., Carstens, B. C., & Brumfield, R. T. (2012). Applications of next-generation sequencing to phylogeography and phylogenetics. Molecular Phylogenetics and Evolution.

  • Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., et al. (2005). The Phanerozoic record of global sea-level change. Science, 310, 1293–1298.

    Google Scholar 

  • Mittelbach, G. G., Schemske, D. W., Cornell, H. V., Allen, A. P., Brown, J. M., Bush, M. B., et al. (2007). Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecology Letters, 10, 315–331.

    PubMed  Google Scholar 

  • Moore, W. (1995). Inferring phylogenies from mtDNA variation: mitochondrial-gene trees versus nuclear-gene trees. Evolution, 49, 718–726.

    Google Scholar 

  • Mora, A., Baby, P., Roddaz, M., Parra, M., Brusset, S., Hermoza, W., et al. (2010). Tectonic history of the Andes and sub-Andean zones: implications for the development of the Amazon drainage basin. In C. Hoorn & F. P. Wesselingh (Eds.), Amazonia: landscape and species evolution. A look into the past (pp. 38–60). Chichester: Wiley–Blackwell.

  • Moritz, C. (2002). Strategies to protect biological diversity and the evolutionary processes that sustain it. Systematic Biology, 51, 238–254.

    PubMed  Google Scholar 

  • Moritz, C., & Faith, D. P. (1998). Comparative phylogeography and the identification of genetically divergent areas for conservation. Molecular Ecology, 7, 419–429.

    Google Scholar 

  • Moritz, C., Patton, J. L., Schneider, C. J., & Smith, T. B. (2000). Diversification of rainforest faunas: an integrated molecular approach. Annual Review of Ecology and Systematics, 31, 533–563.

    Google Scholar 

  • Nelson, B. W., Ferreira, C. A. C., da Silva, M. F., & Kawasaki, M. L. (1990). Endemism centres, refugia and botanical collection density in Brazilian Amazonia. Nature, 345, 714–716.

    Google Scholar 

  • Nielsen, R., & Beaumont, M. A. (2009). Statistical inferences in phylogeography. Molecular Ecology, 18, 1034–1047.

    PubMed  CAS  Google Scholar 

  • Noonan, B. P., & Gaucher, P. (2005). Phylogeography and demography of Guianan harlequin toads (Atelopus): diversification within a refuge. Molecular Ecology, 14, 3017–3031.

    PubMed  CAS  Google Scholar 

  • Noonan, B. P., & Gaucher, P. (2006). Refugial isolation and secondary contact in the dyeing poison frog Dendrobates tinctorius. Molecular Ecology, 15, 4425–4435.

    PubMed  CAS  Google Scholar 

  • Noonan, B. P., & Wray, K. P. (2006). Neotropical diversification: the effects of a complex history on diversity within the poison frog genus Dendrobates. Journal of Biogeography, 33, 1007–1020.

    Google Scholar 

  • Nordborg, M. (2001). Coalescent theory. In D. J. Balding, M. Bishop, & C. Cannings (Eds.), Handbook of statistical genetics (p. 179212). Chichester: Wiley.

    Google Scholar 

  • Nores, M. (1999). An alternative hypothesis for the origin of Amazonian bird diversity. Journal of Biogeography, 26, 475–485.

    Google Scholar 

  • Ogden, R., & Thorpe, R. S. (2002). Molecular evidence for ecological speciation in tropical habitats. Proceedings of the National Academy of Sciences of the United States of America, 99, 13612–13615.

    PubMed  CAS  Google Scholar 

  • Orr, M. R., & Smith, T. B. (1998). Ecology and speciation. Trends in Ecology and Evolution, 13, 502–506.

    PubMed  CAS  Google Scholar 

  • Patterson, B. D. (2000). Patterns and trends in the discovery of new Neotropical mammals. Diversity and Distributions, 6, 145–151.

    Google Scholar 

  • Patton, J. L., & da Silva, M. N. F. (1998). Rivers, refuges, and ridges. The geography of speciation of Amazonian mammals. In D. J. Howard & S. H. Berlocher (Eds.), Endless forms: species and speciation (pp. 202–213). New York: Oxford University Press.

    Google Scholar 

  • Patton, J. L., & da Silva, M. N. F. (2001). Molecular phylogenetics and the diversification of Amazonian mammals. In I. C. G. Vieira, J. M. C. Silva, D. C. Oren, & M. A. D'Incao (Eds.), Diversidade biológica e cultural da Amazônia (pp. 139–164). Belém: Museu Paraense Emílio Goeldi.

    Google Scholar 

  • Patton, J. L., & Smith, M. F. (1992). MtDNA phylogeny of Andean mice: a test of diversification across ecological gradients. Evolution, 46, 174–183.

    CAS  Google Scholar 

  • Patton, J. L., da Silva, M. N. F., & Malcolm, J. R. (1994). Gene genealogy and differentiation among arboreal spiny rats (Rodentia, Echimyidae) of the Amazon Basin: a test of the riverine barrier hypothesis. Evolution, 48, 1314–1323.

    Google Scholar 

  • Patton, J. L., da Silva, M. N. F., & Malcolm, J. R. (2000). Mammals of the Rio Juruá and the evolutionary and ecological diversification of Amazonia. Bulletin of the American Museum of Natural History, 1–306.

  • Pearse, D. E., & Crandall, K. A. (2004). Beyond FST: analysis of population genetic data for conservation. Conservation Genetics, 5, 585–602.

    CAS  Google Scholar 

  • Pennington, R. T., & Dick, C. W. (2010). Diversification of the Amazonian flora and its relation to key geological and environmental events: a molecular perspective. In C. Hoorn & F. P. Wesselingh (Eds.), Amazonia: landscape and species evolution. A look into the past (pp. 373–385). Chichester: Wiley–Blackwell.

    Google Scholar 

  • Peres, C. A., Patton, J. L., & daSilva, M. N. F. (1996). Riverine barriers and gene flow in Amazonian saddle-back tamarins. Folia Primatologica, 67, 113–124.

    Google Scholar 

  • Peres, C. A., Gardner, T. A., Barlow, J., Zuanon, J., Michalski, F., Lees, A. C., et al. (2010). Biodiversity conservation in human-modified Amazonian forest landscapes. Biological Conservation, 143, 2314–2327.

    Google Scholar 

  • Pons, D., & De Franceschi, D. (2007). Neogene woods from western Peruvian Amazon and palaeoenvironmental interpretation. Bulletin of Geosciences, 82, 343–354.

    Google Scholar 

  • Prance, G. T. (1982). Biological diversification in the Tropics. New York: Columbia University Press.

    Google Scholar 

  • Prance, G. T. (1985). The changing forests. In G. T. Prance & T. E. Lovejoy (Eds.), Key environments: Amazonia (pp. 146–165). Oxford: Pergamon.

    Google Scholar 

  • Provan, J., & Bennett, K. D. (2008). Phylogeographic insights into cryptic glacial refugia. Trends in Ecology and Evolution, 23, 564–571.

    PubMed  Google Scholar 

  • Puritz, J. B., Addison, J. A., & Toonen, R. J. (2012). Next-generation phylogeography: a targeted approach for multilocus sequencing of non-model organisms. PLoS ONE, 7, e34241.

  • Quijada-Mascareñas, J. A., Ferguson, J. E., Pook, C. E., Salomão, M. G., Thorpe, R. S., & Wüster, W. (2007). Phylogeographic patterns of trans-Amazonian vicariants and Amazonian biogeography: the Neotropical rattlesnake (Crotalus durissus complex) as an example. Journal of Biogeography, 34, 1296–1312.

    Google Scholar 

  • Räsänen, M., Salo, J. S., & Kalliola, R. J. (1987). Fluvial perturbance in the western Amazon Basin: regulation by long-term sub-Andean tectonics. Science, 238, 1398–1401.

    Google Scholar 

  • Räsänen, M. E., Salo, J. S., Jungnert, H., & Pittman, L. R. (1990). Evolution of the western Amazon lowland relief: impacts of Andean foreland dynamics. Terra Nova, 2, 320–332.

    Google Scholar 

  • Räsänen, M. E., Linna, A. M., Santos, J. C. R., & Negri, F. R. (1995). Late Miocene tidal deposits in the Amazonian foreland basin. Science, 269, 386–390.

    PubMed  Google Scholar 

  • Renner, S., Neumann, D., Burkart, M., Feit, U., Giere, P., Gröger, A., et al. (2012). Import and export of biological samples from tropical countriesconsiderations and guidelines for research teams. Organisms Diversity and Evolution, 12, 81–98.

    Google Scholar 

  • Ribas, C. C., Aleixo, A., Nogueira, A. C. R., Miyaki, C. Y., & Cracraft, J. (2012). A palaeobiogeographic model for biotic diversification within Amazonia over the past three million years. Proceedings of the Royal Society B: Biological Sciences, 279, 681–689.

    PubMed  Google Scholar 

  • Richards, C. L., Carstens, B. C., & Knowles, L. L. (2007). Distribution modelling and statistical phylogeography: an integrative framework for generating and testing alternative biogeographical hypotheses. Journal of Biogeography, 34, 1833–1845.

    Google Scholar 

  • Riddle, B. R., Dawson, M. N., Hadly, E. A., Hafner, D. J., Hickerson, M. J., Mantooth, S. J., et al. (2008). The role of molecular genetics in sculpting the future of integrative biogeography. Progress in Physical Geography, 173–202.

  • Roberts, J. L., Brown, J. L., May, R., Arizabal, W., Schulte, R., & Summers, K. (2006). Genetic divergence and speciation in lowland and montane peruvian poison frogs. Molecular Phylogenetics and Evolution, 41, 149–164.

    PubMed  CAS  Google Scholar 

  • Roberts, J. L., Brown, J. L., Schulte, R., Arizabal, W., & Summers, K. (2007). Rapid diversification of colouration among populations of a poison frog isolated on sky peninsulas in the central cordilleras of Peru. Journal of Biogeography, 34, 417–426.

    Google Scholar 

  • Roddaz, M., Hermoza, W., Mora, A., Baby, P., Parra, M., Christophoul, F., et al. (2010). Cenozoic sedimentary evolution of the Amazonian foreland basin system. In C. Hoorn & F. P. Wesselingh (Eds.), Amazonia: landscape and species evolution. A look into the past (pp. 61–88). Chichester: Wiley–Blackwell.

    Google Scholar 

  • Rodrigues, M. T. (2005). The conservation of Brazilian reptiles: challenges for a megadiverse country. Conservation Biology, 19, 659–664.

    Google Scholar 

  • Rossetti, D. F., & Valeriano, M. M. (2007). Evolution of the lowest amazon basin modeled from the integration of geological and SRTM topographic data. CATENA, 70, 253–265.

    Google Scholar 

  • Rossetti, D. F., de Toledo, P. M., & Góes, A. M. (2005). New geological framework for western Amazonia (Brazil) and implications for biogeography and evolution. Quaternary Research, 63, 78–89.

    Google Scholar 

  • Rull, V. (2008). Speciation timing and neotropical biodiversity: the TertiaryQuaternary debate in the light of molecular phylogenetic evidence. Molecular Ecology, 17, 2722–2729.

    PubMed  Google Scholar 

  • Rull, V. (2011). Neotropical biodiversity: timing and potential drivers. Trends in Ecology and Evolution, 26, 508–513.

    PubMed  Google Scholar 

  • Salati, E. (1985). The climatology and hydrology of Amazonia. In G. T. Prance & T. E. Lovejoy (Eds.), Key environments: Amazonia (pp. 18–48). Oxford: Pergamon.

    Google Scholar 

  • Salgado-Labouriau, M. L. (1997). Late Quaternary palaeoclimate in the savannas of South America. Journal of Quaternary Science, 12, 371–379

    Google Scholar 

  • Salo, J., Kalliola, R., Häkkinen, I., Mäkinen, Y., Niemelä, P., Puhakka, M., et al. (1986). River dynamics and the diversity of Amazon lowland forest. Nature, 322, 254–258.

    Google Scholar 

  • Sepulchre, P., Sloan, L. C., & Fluteau, F. (2010). Modelling the response of Amazonian climate to the uplift if the Andean mountain range. In C. Hoorn, & F. P. Wesselingh (Eds.), Amazonia: landscape and species evolution. A look into the past (pp. 211–222). Chichester: Wiley–Blackwell.

  • Sick, H. (1967). Rios e enchentes como obstáculo para a avifauna. In H. Lent (Ed.), Atas do simpósio sobre a biota amazônica (Vol. 5, pp. 495–520). Rio de Janeiro: Conselho de Pesquisas.

  • Silva, J. M. C., Rylands, A. B., & da Fonseca, G. A. B. (2005). The fate of the Amazonian areas of endemism. Conservation Biology, 19, 689–694.

    Google Scholar 

  • Sioli, H. (1984). The Amazon and its main affluents: hydrography, morphology of the rivers courses, and river types. In H. Sioli (Ed.), The Amazon: limnology and landscape ecology of a mighty tropical river and its basin (pp. 127–165). Dordrecht: Junk.

    Google Scholar 

  • Smith, T. B., Wayne, R. K., Girman, D. J., & Bruford, M. W. (1997). A role for ecotones in generating rainforest biodiversity. Science, 276, 1855–1857.

    CAS  Google Scholar 

  • Smith, T. B., Kark, S., Schneider, C. J., Wayne, R. K., & Moritz, C. (2001). Biodiversity hotspots and beyond: the need for preserving environmental transitions. Trends in Ecology and Evolution, 16, 431.

    Google Scholar 

  • Solomon, S. E., Bacci, M. Jr., Martins, J. Jr., Vinha, G. G., & Mueller, U. G. (2008). Paleodistributions and comparative molecular phylogeography of leafcutter ants (Atta spp.) provide new insight into the origins of Amazonian diversity. PLoS ONE, 3, e2738.

    PubMed  Google Scholar 

  • Sunnucks, P. (2000). Efficient genetic markers for population biology. Trends in Ecology and Evolution, 15, 199–203.

    PubMed  Google Scholar 

  • Symula, R., Schulte, R., & Summers, K. (2003). Molecular systematics and phylogeography of Amazonian poison frogs of the genus Dendrobates. Molecular Phylogenetics and Evolution, 26, 452–475.

    PubMed  CAS  Google Scholar 

  • Thompson, L. G., Mosley-Thompson, E., & Henderson, K. A. (2000). Ice-core palaeoclimate records in tropical South America since the Last Glacial Maximum. Journal of Quaternary Science, 15, 377–394.

    Google Scholar 

  • Thomson, R. C., Wang, I. J., & Johnson, J. R. (2010). Genome-enabled development of DNA markers for ecology, evolution and conservation. Molecular Ecology, 19, 2184–2195.

    Google Scholar 

  • Valente, C. R., & Latrubesse, E. M. (2012). Fluvial archive of peculiar avulsive fluvial patterns in the largest Quaternary intracratonic basin of tropical South America: the Bananal Basin, Central-Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 356–357, 62–74.

  • van der Hammen, T., & Hooghiemstra, H. (2000). Neogene and Quaternary history of vegetation, climate, and plant diversity in Amazonia. Quaternary Science Reviews, 19, 725–742.

    Google Scholar 

  • Vargas-Ramírez, M., Maran, J., & Fritz, U. (2010). Red- and yellow-footed tortoises, Chelonoidis carbonaria and C. denticulata (Reptilia: Testudines: Testudinidae), in South American savannahs and forests: do their phylogeographies reflect distinct habitats? Organisms Diversity and Evolution, 10, 161–172.

    Google Scholar 

  • Vonhof, H. B., & Kaandorp, R. J. G. (2010). Climate variation in Amazonia during the Neogene and the Quaternary. In C. Hoorn & F. P. Wesselingh (Eds.), Amazonia: landscape and species evolution. A look into the past (pp. 201–210). Wiley–Blackwell: Chichester.

    Google Scholar 

  • Vonhof, H. B., Wesselingh, F. P., & Ganssen, G. M. (1998). Reconstruction of the Miocene western Amazonian aquatic system using molluscan isotopic signatures. Palaeogeography, Palaeoclimatology, Palaeoecology, 141, 85–93.

    Google Scholar 

  • Wakeley, J. (2004). Recent trends in population genetics: more data! more math! simple models? Journal of Heredity, 95, 397–405.

    PubMed  CAS  Google Scholar 

  • Wakeley, J. (2008). Coalescent theory: an introduction. Greenwood Village: Roberts.

    Google Scholar 

  • Wallace, A. R. (1852). On the monkeys of the Amazon. Proceedings of the Zoological Society of London, 20, 107–110.

    Google Scholar 

  • Wanderley-Filho, J. R., Eiras, J. F., & Vaz, P. T. (2007). Bacia do Solimões. Boletim de Geociências da Petrobrás, 15, 217–225.

  • Wanderley-Filho, J. R., Eiras, J. F., da Cruz Cunha, P. R., & van der Ven, P. H. (2010). The Paleozoic Solimões and Amazonas basins and the Acre foreland basin of Brazil. In C. Hoorn & F. P. Wesselingh (Eds.), Amazonia: landscape and species evolution. A look into the past (pp. 29–37). Chichester: Wiley–Blackwell.

  • Webb, S. D. (1995). Biological implications of the middle Miocene Amazon seaway. Science, 269, 361–362.

    PubMed  CAS  Google Scholar 

  • Werneck, F. P. (2011). The diversification of eastern South American open vegetation biomes: historical biogeography and perspectives. Quaternary Science Reviews, 30, 1630–1648.

    Google Scholar 

  • Werneck, F. P., Costa, G. C., Colli, G. R., Prado, D. E., & Sites, J. W., Jr. (2011). Revisiting the historical distribution of Seasonally Dry Tropical Forests: new insights based on palaeodistribution modelling and palynological evidence. Global Ecology and Biogeography, 20, 272–288.

    Google Scholar 

  • Werneck, F. P., Gamble, T., Colli, G. R., Rodrigues, M. T., & Sites, J. J. W. (2012a). Deep diversification and long-term persistence in the South American 'dry diagonal': integrating continent-wide phylogeography and distribution modeling of geckos. Evolution, 66, 3014–3034.

  • Werneck, F. P., Nogueira, C., Colli, G. R., Sites, J. W., Jr., & Costa, G. C. (2012b). Climatic stability in the Brazilian Cerrado: implications for biogeographical connection of South American savannas, species richness, and conservation in a biodiversity hotspot. Journal of Biogeography, 39, 1695–1706.

    Google Scholar 

  • Wesselingh, F., & Salo, J. A. (2006). A Miocene perspective on the evolution of the Amazonian biota. Scripta Geologica, 133, 439–458.

    Google Scholar 

  • Wesselingh, F. P., Hoorn, C., Kroonenberg, S. B., Antonelli, A., Lundberg, J. G., Vonhof, H. B., et al. (2010). On the origin of Amazonian landscapes and biodiversity: a synthesis. In C. Hoorn & F. P. Wesselingh (Eds.), Amazonia: landscape and species evolution. A look into the past (pp. 419–431). Chichester: Wiley–Blackwel.

    Google Scholar 

  • Whitmore, T. C., & Prance, G. T. (1987). Biogeography and Quaternary history in Tropical America. New York: Oxford University Press.

    Google Scholar 

  • Wiens, J. J. (2011). The causes of species richness patterns across space, time, and clades and the role of "ecological limits". Quarterly Review of Biology, 86, 75–96.

    PubMed  Google Scholar 

  • Wiens, J. J., Graham, C. H., Moen, D. S., Smith, S. A., & Reeder, T. W. (2006). Evolutionary and ecological causes of the latitudinal diversity gradient in hylid frogs: treefrog trees unearth the roots of high tropical diversity. The American Naturalist, 168, 579–596.

    PubMed  Google Scholar 

  • Wilkins, J. F., & Wakeley, J. (2002). The coalescent in a continuous, finite, linear population. Genetics, 161, 873–888.

    PubMed  Google Scholar 

  • Wilkinson, M. J., Marshall, L. G., Lundberg, J. G., & Kreslavsky, M. H. (2010). Megafan environments in northern South America and their impact on Amazon Neogene aquatic ecosystems. In C. Hoorn & F. P. Wesselingh (Eds.), Amazonia: landscape and species evolution. A look into the past (pp. 162–184). Chichester: Wiley–Blackwell.

    Google Scholar 

  • Wüster, W., Ferguson, J. E., Quijada-Mascareñas, J. A., Pook, C. E., Salomão, M. G., & Thorpe, R. S. (2005). Tracing an invasion: landbridges, refugia, and the phylogeography of the Neotropical rattlesnake (Serpentes: Viperidae: Crotalus durissus). Molecular Ecology, 14, 1095–1108.

  • Zachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686–693.

    PubMed  CAS  Google Scholar 

  • Zink, R. M., & Barrowclough, G. F. (2008). Mitochondrial DNA under siege in avian phylogeography. Molecular Ecology, 17, 2107–2121.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Support for this work was provided to R.N.L. by CAPES doctoral fellowship (No. BEX 1861/07-7), BYU Graduate Student Society Research Award, American Society of Mammalogists Grants-in-Aid, and Idea Wild. Additional support to R.N.L. and D.S.R. was available from NSF Doctoral Dissertation Improvement Grant (No. 1115208). We thank Margaret Byrne and Dorothy Steane for providing a modified version of the timeline scheme depicted on Fig. 1a. We also are thankful to Fernanda Werneck for assistance with the map and useful comments on previous versions of the manuscript. We thank two anonymous reviewers for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael N. Leite.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 151 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leite, R.N., Rogers, D.S. Revisiting Amazonian phylogeography: insights into diversification hypotheses and novel perspectives. Org Divers Evol 13, 639–664 (2013). https://doi.org/10.1007/s13127-013-0140-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-013-0140-8

Keywords

Navigation